ãã½ã¦ã«ï¼è±æµ¦æ½¤ä¸ãï¼æ¥åå¾ï¼æåï¼æ¥æ¬æéåï¼é ãã½ã¦ã«ã®å°ä¸éï¼å·ç·ä¸å¾åéé§ ä»è¿ã§ãåè»ä¸ã®é»è»ã«å¾ç¶ã®é»è»ã追çªããã½ã¦ã«å¸æ¶é²ç½é£æ¬é¨ã«ããã¨ãåå¾ï¼æï¼ï¼åç¾å¨ãä¹å®¢ï¼ï¼ï¼äººã軽å·ãè² ããç é¢ã«æ¬éãããã
æ£æçãªã«ãã´ãªã¼åã é£ç¶å¤æ°ã§ææã«ãªããªãã£ãããã«ãã´ãªå¤æ°ã«ãã¦ææã«ãã¦ãè«æãèªãã ã¨ãã話ãèãã ããã¯é¢ç½ããã¤ããããã¢ã¯ã»ããããããªã é»ãçµ±è¨å®¶ã«ãªã£ãåæã§ãã©ã®ç¨åº¦ããã®æã使ããã®ããã£ã¦ã¿ããã ### é»ãçµ±è¨å®¶ nsim <- 1000 res <- matrix(0, nrow = nsim, ncol = 3) for (j in 1:nsim) { n <- 100 y <- rnorm(n, 10, 5) age <- rnorm(n, 50, 15) p.glm <- summary(glm(y ~ 1 + age, family = gaussian))$coefficients[2, 4] y2 <- y[order(age)] p.kuro <- numeric(n - 3) for (i in 2:(n - 2)) { p.kuro
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}