Kafka, HBase, SparkStreamingã«ãã大è¦æ¨¡æ å ±åé解æ
ãªã¼ãã³ã½ã¼ã¹ã®æ°ããã¹ãã¬ã¼ã¸ã¨ã³ã¸ã³ãKudu ã¤ãã«æ¬æ¥ã¢ãã¦ã³ã¹ããã Kudu (ã¯ãã¥ï¼ã次ä¸ä»£ãã¼ãã¦ã§ã¢ã«ã対å¿ãããªã¼ãã³ã½ã¼ã¹ã®ã¹ãã¬ã¼ã¸ã¨ã³ã¸ã³ã§ããã¾ã ãã¼ã¿çã§ããã3å¹´ãã®éçºæéãçµã¦ã¤ãã«å ¬éããã¾ããï¼ Super excited to finally talk about what I've been working on the last 3 years: Kudu! http://t.co/1W4sqFBcyH http://t.co/1mZCwgdOO5 â Todd Lipcon (@tlipcon) September 28, 2015 æ°æ¥åã«ãªã¼ã¯ãããè¨äºã«ãKuduã¯HDFSãHBaseãç½®ãæãããã®ã ãã¨æ¸ããã¦ãã¾ããããããã¯ééãã§ãã詳細ã¯FAQãªã©ã«ãæ¸ããã¦ãã¾ãããHDFSã¨HBaseãè£ãæ°ããã¹ãã¬ã¼ã¸ã¨ã³ã¸ã³ã§ã
Facebookã¯å¤§è¦æ¨¡ãªãã¼ã¿å¦çã®åºç¤ã¨ãã¦HBaseãå©ç¨ãã¦ãã¾ãããªãFacebookã¯HBaseãç¨ãã¦ããã®ããã©ã®ããã«å©ç¨ãã¦ããã®ã§ããããï¼ 7æ1æ¥ã«é½å ã§è¡ãããåå¼·ä¼ã§ãFacebookã®ã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ã§ããã¸ã§ããµã³ã»ã°ã¬ã¤ï¼Jonathan Grayï¼æ°ã«ãã解説ãè¡ããã¾ããã ãã®è¨äºã¯ããFacebookãHBaseã大è¦æ¨¡ãªã¢ã«ã¿ã¤ã å¦çã«å©ç¨ãã¦ããçç±ï¼åç·¨ï¼ãã®ç¶ãã§ãã äºä¾1 Titanï¼Facebookã¡ãã»ã¼ã¸ï¼ HBaseãFacebookã§ã©ã®ãããªã¢ããªã±ï¼ã·ã§ã³ã§ä½¿ããã¦ããã®ããç´¹ä»ãããã Facebookã®æ°ã¡ãã»ã¼ã¸æ©è½ã
Facebookã¯å¤§è¦æ¨¡ãªãã¼ã¿å¦çã®åºç¤ã¨ãã¦HBaseãå©ç¨ãã¦ãã¾ãããªãFacebookã¯HBaseãç¨ãã¦ããã®ããã©ã®ããã«å©ç¨ãã¦ããã®ã§ããããï¼ 7æ1æ¥ã«é½å ã§è¡ãããåå¼·ä¼ã§ãFacebookã®ã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ã§ããã¸ã§ããµã³ã»ã°ã¬ã¤ï¼Jonathan Grayï¼æ°ã«ãã解説ãè¡ããã¾ããã 解説ã¯ã»ã¼ã¹ã©ã¤ãã®å 容ãã®ã¾ã¾ã§ãããå½æ¥ä½¿ãããæ¥æ¬èªè¨³ãããã¹ã©ã¤ããå ¬éããã¦ããã®ã§ããã¤ã³ãã¨ãªããã¼ã¸ãç´¹ä»ãã¾ãããã Realtime Apache Hadoop at Facebook ãªããªã¢ã«ã¿ã¤ã ãã¼ã¿ã®åæã«ãHadoop/HBaseã使ãã®ãï¼ MySQLã¯å®å®ãã¦ããããåæ£ã·ã¹ãã ã¨ãã¦è¨è¨ããã¦ãããããµã¤ãºã«ãä¸éããããä¸æ¹ãHadoopã¯ã¹ã±ã¼ã©ãã«ã ãããã°ã©ãã³ã°ãé£ãããã©ã³ãã ãªæ¸ãè¾¼ã¿ãèªã¿è¾¼ã¿ã«åãã¦ããªãã Faceb
What is Lily? Lily does Smart Data, at Scale. Lily is the first Big Data content storage and search repository, built on top of Apache HBase and SOLR. It is made available under the Apache license by Outerthought. Lily is a scalable foundation for large-scale content applications, such as SaaS-style content management, archiving, media publishing, and document management. It offers a flexible data
ICHIRO SATOH @ichiro_satoh åæ£ã·ã¹ãã å±çã«ã¯Vector Clockã¯å®ã·ã¹ãã ã§ã¯ä½¿ããªãã¨ãããããç¥ãããçµé¨åãããã¾ãã¦ï¼ã¹ã±ã¼ã«ããªããã§ããï¼RT @shot6: ã¡ãªã¿ã«Cassandraã§æ¡ç¨ãããã¨ãã¦ããã®ã¯Vector Clockã§ã¯ãªãVersioned Clockãªã®ã§ã£ãã
Tatsuya Kawano @tatsuya6502 ä»æ¥ã¯ã¨ã¡ããã«ãé¡ããã¦ãè²å ã¨å®¶äºãåæ¥ãä¼ã¿ãè¿æã®ã«ãã§ã§ã #hadoopreading ã®ã¹ã©ã¤ãä½æãé£ç¶ä½æ¥æéãï¼æéãè¶ ããã¨ãã¼ã¹ãæ°åã«ä¸ãããã¯ãã©ããã¯ãã©ã ⬠Tatsuya Kawano @tatsuya6502 #hadoopreading ææ¥ï¼6/28ï¼ã®ãã¬ã¼ã³è³æã®ãã©ããçãã§ãã¾ãããããå°ãä¿®æ£ããäºå®ã§ãããç¾æç¹ã§ãã£ããå ¬éãã¾ãã Cassandra ã«ã¤ãã¦ã¯è©³ãããªãã®ã§ãééããªã©ããã°ãææããã ããã¨å¬ããã§ãã http://ow.ly/23Ka4
2010å¹´05æ25æ¥ Riak 㨠Cassandra 㨠HBaseãããã¾ã¼! Mozilla Blog Riak and Cassandra and HBase, Oh My!ã®åæ訳ãååæ£ KVS ã®ç¹å¾´ãåæããã¦ãã¦èå³æ·±ãâ¦â¦ã¨æã£ã¦è¨³ãã¦ã¿ãããã®ç¡æ§ãªã¿ã¤ãã«ã¯ Google 翻訳ã«ããã Riak 㨠Cassandra 㨠HBaseãããã¾ã¼! æã ã¯ãSoCorro Crash ããã¸ã§ã¯ãã«ãã㦠HBase ã¨ã®çµ±åãé²ãã¦ãããããã®è©±ã¯ã¡ãã£ã¨ç½®ãã¦ããã¦ãä»åã¯ã¡ããªãã¯ã»ãã¼ã ãå·»ãè¾¼ã¾ãã¦ããå¥ã®ããã¸ã§ã¯ãã«ã¤ãã¦è©±ããããã Mozilla Labs Test Pilotã¯ãå®ä¸çã® Firefox ã¦ã¼ã¶ãããéãããã¼ã¿ãåæãã¦ãã¦ã¼ã¶ã»ã¨ã¯ã¹ããªã¨ã³ã¹ãåä¸ãããããã®å®é¨ãããããå®éçãã¼ã¿ãéãããããããã®ããã¸ã§ã¯ãã ã ç§
Tuesday, May 18, 2010 Comparing PNUTS, HBase and Cassandra A lot of NoSQL systems have been sprouting up recently and an increasing number of people are using NoSQL data stores and moving away from RDBMS systems. There's nothing wrong with relational database systems but they are optimized for certain use cases, which they handle very well. NoSQL systems (Bigtable, Dynamo, PNUTS, CouchDB, MongoDB,
Occasionally useful posts about RIAs, Web scale computing & miscellanea My team is currently working on a brand new product â the forthcoming MMO www.FightMyMonster.com. This has given us the luxury of building against a NOSQL database, which means we can put the horrors of MySQL sharding and expensive scalability behind us. Recently a few people have been asking why we seem to have changed our pr
YDN Hadoop and Distributed Computing at Yahoo! Pig, Cascalog & HBase Among Highlights of May Hadoop Meet-Up Hi Hadoopers Thanks to close to 300 developers who came this week to Yahoo! for our monthly Hadoop User Group meeting. The energy in the packed room was phenomenal and conversations continued long after the formal sessions. Hundreds of Hadoop Fans Flock to Yahoo! for the May Hadoop User Grou
Part1 / Part2 æ´æ°å±¥æ´ 2010/06/20 ãªã³ã¯è¿½å å ¥éãäºä¾ç´¹ä»ããã¥ã¼ã¹ Part2ã¸ç§»å EC2ãPigãMapReduceãHDFS æ°è¦è¿½å æ§è½æ¸¬å® å ¬å¼ Welcome to Apache Hadoop! æ¥æ¬èªè¨³ Hadoopã¦ã¼ã¶ã¼ä¼ Welcome to Hadoop MapReduce! "大è¦æ¨¡ãªè¨ç®ãã¼ãã»ã¯ã©ã¹ã¿ä¸ã«ããã¦è¨å¤§ãªãã¼ã¿ãé«éã§ä¸¦åå¦çããã¢ããªã±ã¼ã·ã§ã³ãä½æããããã®ããã°ã©ãã³ã°ã¢ãã«ããã³ã½ããã¦ã§ã¢ãã¬ã¼ã ã¯ã¼ã¯" Welcome to Pig! "大è¦æ¨¡ãªãã¼ã¿ã»ãããåæããããã®ãã©ãããã©ã¼ã ""Pig ã®è¨èªã¬ã¤ã¤ãæ§æãã¦ããã®ã¯ãPig Latin ã¨å¼ã°ããããã¹ããã¼ã¹ã®è¨èª" wikipedia Apache Hadoop - Wikipedia, the free encyclopedia Apa
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}