kernel/vmæ¢æ¤épart7ã®çºè¡¨ã¹ã©ã¤ãã§ãã https://kernelvm.connpass.com/event/330079/ 以ä¸åæ¼åç»ã®ããã¹ãã§ãããã¾ãã https://youtu.be/kJzG-o0_m24
ã¯ããã« ltreeã¨ã¯ ltreeå ltreeã®æä½ æ´»ç¨æ³ 1. æ¿èªããã¼ã®æ§ç¯ äºåæºå ãã¼ãã«ä½æ ãã¼ã¿è¿½å 2. ãã¼ãã«ã«ç´°ããã¢ã¯ã»ã¹å¶å¾¡ãããã äºåæºå ltreeã®æå¹å ãã¼ãã«ä½æ ããªã·ã¼ä½æ è¡ã»ãã¥ãªãã£ããªã·ã¼ã®æå¹å ããªã·ã¼ã®è¨å® ãã¼ã¿ã追å ã¦ã¼ã¶ã¼ä½æ 試ã ã¾ã¨ã ã¯ããã« ããã«ã¡ã¯ï¼ ã¨ã³ã¸ãã¢2å¹´ç®ã®TKDSã§ãï¼ ä»åã¯ltreeã«ã¤ãã¦èª¿ã¹ããã®æ´»ç¨æ³ãèãã¦ã¿ã¾ããã ltreeã«ã¤ãã¦ãltreeã®æ´»ç¨æ³ã®2段æ§æã§ãã ltreeã¨ã¯ é層ããªã¼æ§é ã模ããæ§é ãæ ¼ç´ããæ©è½ãæä¾ããæ¡å¼µæ©è½ã§ãã 詳ããã¯ããã¥ã¡ã³ããã¿ã¦ãã ããã ltreeå é層ããªã¼æ§é ã表ãåã§ãã ä¾ï¼`Company.Department.Team1 ãããåºåãã§å¤§æåå°æåã¯åºå¥ããªãããã§ãã åãã¼ã¿ã¯ã©ãã«ã¨å¼ã³ã¾ãï¼ä¸è¨ã§ã®C
from wordllama import WordLlama # Load the default WordLlama model wl = WordLlama.load() # Calculate similarity between two sentences similarity_score = wl.similarity("i went to the car", "i went to the pawn shop") print(similarity_score) # Output: 0.06641249096796882 # Rank documents based on their similarity to a query query = "i went to the car" candidates = ["i went to the park", "i went to th
Posted on Tuesday, April 2, 2024. Updated Wednesday, April 3, 2024. Introduction Andres Freund published the existence of the xz attack on 2024-03-29 to the public oss-security@openwall mailing list. The day before, he alerted Debian security and the (private) distros@openwall list. In his mail, he says that he dug into this after âobserving a few odd symptoms around liblzma (part of the xz packag
Recommenders objective is to assist researchers, developers and enthusiasts in prototyping, experimenting with and bringing to production a range of classic and state-of-the-art recommendation systems. Recommenders is a project under the Linux Foundation of AI and Data. This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. The exam
Home Data Developer Platform¶ A Data Platform Specification, open for adoption by any data platform developer. A modern way to run data engineering teams¶ Data teams are drained from continuously plumbing integrations and fragile pipelines, which leaves little to no time to focus on the real deal - data and data applications. Businesses that have a good grasp on data realise that today data makes
ãã¸ã¿ã«æè¡ãæ´»ç¨ãã¦ä¼æ¥ã®ãã¸ãã¹ãå¤é©ããèªç¤¾ã®ç«¶äºåãé«ãã¦ããããã¸ã¿ã«ã»ãã©ã³ã¹ãã©ã¼ã¡ã¼ã·ã§ã³ï¼DXï¼ãã注ç®ãéãããªããå¾æ¥ã®ãããªITãã³ããã·ã¹ãã é¨éãä¸å¿ã«ãªã£ã¦è¦ä»¶å®ç¾©ãããããã¹ã¿ã¤ã«ãããæ¥åé¨éã®ã¦ã¼ã¶ã主ä½çã«é¢ä¸ããã¹ã¿ã¤ã«ã¸ã®å¤é©ã®å¿ è¦æ§ãå¢ãã¦ãã¾ãã ã·ã¹ãã ã®è¦ä»¶ãå®ç¾©ãã責任ã¯ãæ§ç¯ãããã·ã¹ãã ãå©ç¨ãã¦ãã¸ãã¹ã«è²¢ç®ããå½¹ç®ãè² ãã¦ã¼ã¶ã«ããã¨è¨ããã¦ãã¾ããããããªãããã·ã¹ãã éçºã®é 延ã®éåã¯è¦ä»¶å®ç¾©ã®å¤±æã«ããã¨è¨ãããããã«ãè¦ä»¶å®ç¾©ã«ããã¦ã¯ããã®éç¨ã§æ§ã ãªåé¡ã«ç´é¢ãã¾ãã ããã§IPAã§ã¯ãè¦ä»¶å®ç¾©ã®éç¨ã§ç´é¢ããåé¡ã¸ã®å¯¾å¿ãã¬ã¤ããããã¨ããã¦ã¼ã¶ã¸ã®ãããã£ããã®æ¯æ´çã¨ãªãã¨èãããã¦ã¼ã¶ã®ããã®è¦ä»¶å®ç¾©ã¬ã¤ã(åç)ãã®å 容ãä¸æ°ãããã¦ã¼ã¶ã®ããã®è¦ä»¶å®ç¾©ã¬ã¤ã 第2ç è¦ä»¶å®ç¾©ãæåã«å°ã128ã®åã©ãããã¨
Mercari, Inc. offers C2C marketplace services as well as online and mobile payment solutions. Users can sell items on the marketplace, and make purchases in physical stores. Mercari is actively working on preventing phishing attacks. This is the driving force behind the adoption of passkey authentication. To enhance phishing resistance, several factors need to be considered, leading to the introdu
CVSSï¼Common Vulnerability Scoring Systemï¼ã¯ãèå¼±æ§ç®¡çã«ãããåºæ¬çãªä»çµã¿ã¨ãã¦åºãå©ç¨ããã¦ãããæ¥çå ¨ä½ã®ããã¡ã¯ãã¹ã¿ã³ãã¼ãã«ãªã£ã¦ãã¾ããCVSSã¯FIRSTï¼Forum of Incident Respones and Security Teamsï¼å ã«è¨ç½®ãããCVSS-SIGï¼Special Interest Groupï¼1ã«ãã£ã¦çå®ããã2023å¹´7æç¾å¨ã®ææ°ãã¼ã¸ã§ã³ã¯3.1ã¨ãªã£ã¦ãã¾ãã2023å¹´6æã«æ¬¡ãã¼ã¸ã§ã³ã§ãã4.0ã®ãããªãã¯ãã¬ãã¥ã¼ç2ãå ¬éããã¦ãããå¯ããããã³ã¡ã³ããã¬ãã¥ã¼ã»åæ ããå¾ã2023å¹´10æãç®éã«ãã¼ã¸ã§ã³4.0ã®å ¬éãäºå®ããã¦ãã¾ããæ¬ç¨¿ã§ã¯ãããªãã¯ãã¬ãã¥ã¼çã«åºã¥ãã¦ãç¾è¡ã®ãã¼ã¸ã§ã³3.1ã¨ã®å¤æ´ç¹ã解説ãã¾ããã¾ããSSVCï¼Stakeholder-Specific
In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurre
ã¯ããã« Turing æ ªå¼ä¼ç¤¾ã®ãªãµã¼ããã¼ã ã§ã¤ã³ã¿ã¼ã³ããã¦ããæ±äº¬å·¥æ¥å¤§å¦ B4 ã®è¤äº(@okoge_kaz)ã§ãã 大è¦æ¨¡ã¢ãã«ã¸ã®æ³¨ç®ã®é«ããèã§æããä»æ¥ãã®ããã§ãããäºåå¦ç¿ã®ç¥è¦ã«ã¤ãã¦ã¯ä¾ç¶ã¨ãã¦ååã«å ±æããã¦ããã¨ã¯è¨ãé£ãã¨å人çã«æãã¦ãã¾ãã Turingæ ªå¼ä¼ç¤¾ã§ã¯ã次ä¸ä»£ã®èªåé転æè¡ãæ¯ããæè¡ã®1ã¤ã¨ãã¦å¤§è¦æ¨¡è¨èªã¢ãã«ã«æ³¨ç®ãã¦ãããç¬èªã«ç 究éçºãè¡ã£ã¦ãã¾ããä»åã¯å¤§è¦æ¨¡è¨èªã¢ãã«ãå¦ç¿ããéãç¨ããã©ã¤ãã©ãªåè£ã®ï¼ã¤ã«ä¸ããã§ãããGPT-NeoXã«ã¤ãã¦è§£èª¬ãã¾ãã 以ä¸ã§ç°å¢æ§ç¯æ¹æ³ãå¦ç¿ãè¡ãæ¹æ³ãªã©ã«ã¤ãã¦è©³ãã解説ãã¾ãã GPT-NeoXã¨ã¯ EleutherAIã管çãã¦ããNIDIA/Megatron-LM ãã¼ã¹ã®å¤§è¦æ¨¡è¨èªã¢ãã«(Large Language Model: LLM)ãå¦ç¿ããããã®ã©ã¤ãã©ãªã§ãã Mi
â» ãã®è¨äºã®å 容ã¯å æ¥ã®Qiita Nightã§ã話ããããã¨ã¨ä¸é¨éè¤ãã¾ãã Qiita Nightã§ã¯LTã®å¶éæé(10å)ã«åãããããçµæ§ç«¯æãã¾ããã ã¯ããã« ChatGPTãç»å ´ãã¦ããæ°ã¶æãçµã¡ã¾ããã ChatGPTãã¯ããã¨ããGenerative AIã¯å®å ¨ã«ç¾å¨ã®ITæ¥çã®ãã¬ã³ãã¨ãªã£ã¦ãã¾ãã ä»ãå¤ãã®ä¼æ¥ã§ChatGPT APIããµã¼ãã¹ã«çµã¿è¾¼ãã§é¡§å®¢æä¾ãéå§ããããèªç¤¾ã®ç¤¾å ã·ã¹ãã ã«çµã¿è¾¼ãã ãã¨ç©æ¥µçã«å©ç¨ããããã«ãªãã¾ããã ç§ãGenerative AIãç¡ããªãã¨æ¥åã«æ¯éãåºãã¬ãã«ã§å©ç¨ãã¦ãã¾ãã ããã¦ã2023å¹´5ææç¹ã§ã¯ChatGPTã®APIãå©ç¨ããæ¹æ³ã¨ãã¦ãæ¬å®¶OpenAI社ãæä¾ãã¦ããAPIãå©ç¨ããæ¹æ³ã¨Microsoft社ãæä¾ãã¦ããAzure OpenAI Serviceã®APIãå©ç¨ããæ¹æ³ã®2ã¤ã
ããã¯ä½ ãã¼ã¿åºç¤ã®éçºã«sqlfmtãå°å ¥ãããã¨ã«ã¤ãã¦èãã¦ã¿ããã®ã§ãã (ãã¼ã ã«sqlfmtãå°å ¥ããããã«æ¸ãã¦ããã®ã«ãªãã¾ã) sqlfmtã«ãã£ã¦ã©ã®ãããªèª²é¡ã解決ãããã®ã 大ããã¯ããã«éç´ãããããªã¨æãã¾ãã ã§ã¯ã¹ã¿ã¤ã«å¨ãã«ããéçºè çç£æ§ãé»å®³ããè¦å ã¨ã¯ã©ã®ãããªãã®ãã¨ããã¨: èªã¿ã¥ããSQLã«ãããã°ã®çºè¦ã®é ã ãã¸ãã¯å¨ãã«ã¯é¢ä¿ã®ãªãç®æã®ã¬ãã¥ã¼ãããå¿ è¦æ§ SQLã¹ã¿ã¤ã«ã®ã¹ã¿ã³ã¹ã®éãã«ããè¡çª ã¨ãããã®ãããã¾ãã ãããsqlfmtãªãã©ã解決ã§ããããç´¹ä»ãã¾ãã sqlfmtãªãã©ã解決ã§ããã èªã¿ã¥ããSQLã«ãããã°ã®çºè¦ã®é ã ããã¯ããããformatterãå°å ¥ãã¦ããªããã¨ã«ããçãããã®ãæ³å®ãã¦ãã¾ãã ãããã¨é·ãä¸è¡ãã¹ãã¼ã¹ã®ç¡ãæ¿å¯ãªä¸è¡ãæããªãã¤ã³ãã³ããç¡æå³ãªæ¹è¡...ãªã©ã«ãããä¸ç¨æã«
Run time and cost This model runs on Nvidia T4 GPU hardware. Predictions typically complete within 32 seconds. The predict time for this model varies significantly based on the inputs. Model description Provides approximate text prompts that can be used with stable diffusion to re-create similar looking versions of the image/painting. Try it by copying the text prompts to stable diffusion! A sligh
å··ã§è©±é¡ã®Stable Diffusionï¼ä»¥ä¸SDï¼ããã¡ã¤ã³ãã¥ã¼ãã³ã°ããæ¹æ³ãå ¬éãããã®ã§ãæ©éããã¾ãã
It is our pleasure to announce the public release of stable diffusion following our release for researchers [https://stability.ai/stablediffusion] Over the last few weeks, we all have been overwhelmed by the response and have been working hard to ensure a safe and ethical release, incorporating data from our beta model tests and community for the developers to act on. In cooperation with the tirel
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}