Courseraã®æ©æ¢°å¦ç¿ãã¿ã®ç¶ããååã¯ããã¸ã¹ãã£ãã¯å帰ã®ãã©ã¡ã¼ã¿æ¨å®ï¼2014/4/15ï¼ã«å ±å½¹å¾é æ³ï¼Conjugate Gradient: CGæ³ï¼ã使ãã¾ãããä»åã¯ããè¤éãªãã¥ã¼ã©ã«ãããï¼å¤å±¤ãã¼ã»ãããã³ï¼ã®ãã©ã¡ã¼ã¿æ¨å®ã«å ±å½¹å¾é æ³ãé©ç¨ãã¦ã¿ã¾ããã 以åãå¤å±¤ãã¼ã»ãããã³ã§ææ¸ãæ°åèªèã®å®é¨ãããã¨ãï¼2014/2/1ï¼ã¯ãå ±å½¹å¾é æ³ã§ã¯ãªããå¾é éä¸æ³ï¼Gradient Descentï¼ãç¨ãã¦ãã©ã¡ã¼ã¿ã®æ´æ°å¼ãèªåã§æ¸ãã¦ãã¾ããã self.weight1 -= learning_rate * np.dot(delta1.T, x) self.weight2 -= learning_rate * np.dot(delta2.T, z) å¾é éä¸æ³ã¯ãå¦ç¿çï¼learning rateï¼ãé©åãªå¤ã«è¨å®ããªãã¨åæãé ããçºæ£ãããªã©æ¬ ç¹ãããã¾ã
{{#tags}}- {{label}}
{{/tags}}