せいでんき‐りょく【静電気力】
読み方:せいでんきりょく
静電気力
静電気力
クーロンの法則
クーロンの法則(クーロンのほうそく、英語: Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。
ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられていたが、この成果は彼の死後ずいぶん経ったのちの1879年にジェームズ・クラーク・マクスウェルが遺稿をまとめて『ヘンリー・キャヴェンディシュ電気学論文集』として発表するまで世間に発表されておらず、このためキャヴェンディッシュとは全く別のアプローチからシャルル・ド・クーロンが1785年に法則として再発見したことになる。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。
また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。
概要
クーロンの法則は1785年から89年にかけて発見されたが、それまでの電磁気学(確立していないがそれに関する研究)は、かなり曖昧で定性的なものであった。
電磁気学は、1600年にウィリアム・ギルバートは琥珀が摩擦でものを引きつける現象から、物質を電気性物質、非電気性物質として区別したことに始まり、1640年にはオットー・フォン・ゲーリケによって放電が確認された。
18世紀に入った1729年にスティーヴン・グレイが金属が電気的性質を伝えることを発見し、その作用を起こす存在を電気と名付けた。彼はギルバートの電気性物質の区別を、電気を導く物質として導体、電気を伝えない物質を不導体と分類した。1733年、シャルル・フランソワ・デュ・フェが摩擦によって生じる電気には二つの性質があり、同種間では反発し、異種間では引き合うこと、そして異種の電気を有する物質どうしを接触させると中和して電気的作用を示さなくなることを発見した。1746年にはライデン瓶が発明され、電気を蓄える技術を手に入れた。1750年には検電器が発明され、これらからベンジャミン・フランクリンが電気にプラスとマイナスの区別をつけることでデュ・フェの現象を説明した。
フランクリンの手紙に示唆されて、ジョゼフ・プリーストリーは1766年に中空の金属容器を帯電させ、内部の空気中に電気力が働かないことを示し、重力との類推から電気力が距離の2乗に反比例すると予想した[1][2]。1769年にジョン・ロビソン(John Robison)は実験により同種電荷の斥力は距離の2.06乗に反比例し、異種電荷の引力は距離の2以下の累乗に反比例することを見出した。しかしこの結果は1803年まで公表されなかった[3]。1773年にイギリスのヘンリー・キャヴェンディッシュは同心にした2個の金属球の外球を帯電させ、その二つを帯電させたときに内球に電気が移らないことから逆二乗の法則を導き出した。これはまさにクーロンの法則であり、クーロンよりも早く、しかも高い精度で求めていた。しかし、彼は研究資料を机にしまい込んで発表しなかったためにおよそ100年の間公表されなかった。
1785年にクーロンはねじり天秤を用いて、荷電粒子間にはたらく力が電荷量の二乗に比例し、距離の二乗に反比例するという法則、すなわち以下でしめされるクーロンの法則を導きだした。