どく‐えき【毒液】
毒液
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/19 04:27 UTC 版)
毒液(どくえき、英: venom)は、毒の一種。動物によって生産され、咬傷、刺傷などを介して注入される[1][2][3]。毒素は毒牙や毒針などといった特有の進化をたどった器官によって伝達され、そのプロセスは毒物注入と呼ばれる[2] 。毒液は、直接の摂取や吸入、経皮吸収により伝達される毒 [4] や物理的に伝達される毒素を指す en:toxungen[5]とは区別される。
注釈
出典
- ^ "venom" - ドーランド医学辞典
- ^ a b Gupta, Ramesh C. (24 March 2017). Reproductive and developmental toxicology. Saint Louis. pp. 963–972. ISBN 978-0-12-804240-3. OCLC 980850276
- ^ Chippaux, JP; Goyffon, M (2006). “[Venomous and poisonous animals--I. Overview].” (フランス語). Médecine Tropicale 66 (3): 215–20. ISSN 0025-682X. PMID 16924809.
- ^ “Poison vs. Venom”. Australian Academy of Science (2017年11月3日). 2022年4月17日閲覧。
- ^ Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465. doi:10.1111/brv.12062. PMID 24102715.
- ^ Kordiš, D.; Gubenšek, F. (2000). “Adaptive evolution of animal toxin multigene families”. Gene 261 (1): 43–52. doi:10.1016/s0378-1119(00)00490-x. PMID 11164036.
- ^ Harris, J. B. (September 2004). “Animal poisons and the nervous system: what the neurologist needs to know”. Journal of Neurology, Neurosurgery & Psychiatry 75 (suppl_3): iii40–iii46. doi:10.1136/jnnp.2004.045724. PMC 1765666. PMID 15316044 .
- ^ Raffray, M.; Cohen, G. M. (1997). “Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death?”. Pharmacology & Therapeutics 75 (3): 153–177. doi:10.1016/s0163-7258(97)00037-5. PMID 9504137.
- ^ Dutertre, Sébastien; Lewis, Richard J. (2006). “Toxin insights into nicotinic acetylcholine receptors”. Biochemical Pharmacology 72 (6): 661–670. doi:10.1016/j.bcp.2006.03.027. PMID 16716265.
- ^ Nicastro, G. (May 2003). Franzoni, L.; de Chiara, C.; Mancin, A. C.; Giglio, J. R.; Spisni, A.. “Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom”. Eur. J. Biochem. 270 (9): 1969–1979. doi:10.1046/j.1432-1033.2003.03563.x. PMID 12709056.
- ^ Griffin, P. R.; Aird, S. D. (1990). “A new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis)”. FEBS Letters 274 (1): 43–47. doi:10.1016/0014-5793(90)81325-I. PMID 2253781.
- ^ Samejima, Y.; Aoki, Y.; Mebs, D. (1991). “Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus)”. Toxicon 29 (4): 461–468. doi:10.1016/0041-0101(91)90020-r. PMID 1862521.
- ^ a b Whittington, C. M.; Papenfuss, A. T.; Bansal, P. et al. (June 2008). “Defensins and the convergent evolution of platypus and reptile venom genes”. Genome Research 18 (6): 986–094. doi:10.1101/gr.7149808. PMC 2413166. PMID 18463304 .
- ^ Sobral, Filipa; Sampaio, Andreia; Falcão, Soraia et al. (2016). “Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal”. Food and Chemical Toxicology 94: 172–177. doi:10.1016/j.fct.2016.06.008. hdl:10198/13492. PMID 27288930 .
- ^ Peng, Xiaozhen; Dai, Zhipan; Lei, Qian et al. (April 2017). “Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells”. Experimental and Therapeutic Medicine 13 (6): 3267–3274. doi:10.3892/etm.2017.4391. PMC 5450530. PMID 28587399 .
- ^ Post Downing, Jeanne (1983). “Venom: Source of a Sex Pheromone in the Social Wasp Polistes fuscatus (Hymenoptera: Vespidae)”. Journal of Chemical Ecology 9 (2): 259–266. doi:10.1007/bf00988043. PMID 24407344.
- ^ Post Downing, Jeanne (1984). “Alarm response to venom by social wasps Polistes exclamans and P. fuscatus”. Journal of Chemical Ecology 10 (10): 1425–1433. doi:10.1007/BF00990313. PMID 24318343.
- ^ Baracchi, David (January 2012). “From individual to collective immunity: The role of the venom as antimicrobial agent in the Stenogastrinae wasp societies”. Journal of Insect Physiology 58 (1): 188–193. doi:10.1016/j.jinsphys.2011.11.007. hdl:2158/790328. PMID 22108024.
- ^ Pinto, Antônio F. M.; Berger, Markus; Reck, José; Terra, Renata M. S.; Guimarães, Jorge A. (15 December 2010). “Lonomia obliqua venom: In vivo effects and molecular aspects associated with the hemorrhagic syndrome”. Toxicon 56 (7): 1103–1112. doi:10.1016/j.toxicon.2010.01.013. PMID 20114060.
- ^ Touchard, Axel; Aili, Samira; Fox, Eduardo et al. (20 January 2016). “The Biochemical Toxin Arsenal from Ant Venoms”. Toxins 8 (1): 30. doi:10.3390/toxins8010030. ISSN 2072-6651. PMC 4728552. PMID 26805882 .
- ^ Graystock, Peter; Hughes, William O. H. (2011). “Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands”. Behavioral Ecology and Sociobiology 65 (12): 2319–2327. doi:10.1007/s00265-011-1242-y.
- ^ Frost, Emily (30 August 2013). “What's Behind That Jellyfish Sting?”. Smithsonian 2018年9月30日閲覧。.
- ^ Bonamonte, Domenico; Angelini, Gianni (2016). Aquatic Dermatology: Biotic, Chemical and Physical Agents. Springer International. pp. 54–56. ISBN 978-3-319-40615-2
- ^ Gallagher, Scott A. (2017-08-02). “Echinoderm Envenomation”. EMedicine 2010年10月12日閲覧。.
- ^ Olivera, B. M.; Teichert, R. W. (2007). “Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery”. Molecular Interventions 7 (5): 251–260. doi:10.1124/mi.7.5.7. PMID 17932414.
- ^ Barry, Carolyn (17 April 2009). “All Octopuses Are Venomous, Study Says”. National Geographic. オリジナルの30 September 2018時点におけるアーカイブ。 2018年9月30日閲覧。.
- ^ a b c Smith, William Leo; Wheeler, Ward C. (2006). “Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms”. Journal of Heredity 97 (3): 206–217. doi:10.1093/jhered/esj034. PMID 16740627.
- ^ Venomous Amphibians (Page 1) – Reptiles (Including Dinosaurs) and Amphibians – Ask a Biologist Q&A. Askabiologist.org.uk. Retrieved on 2013-07-17.
- ^ Nowak, R. T.; Brodie, E. D. (1978). “Rib Penetration and Associated Antipredator Adaptations in the Salamander Pleurodeles waltl (Salamandridae)”. Copeia 1978 (3): 424–429. doi:10.2307/1443606. JSTOR 1443606.
- ^ Jared, Carlos; Mailho-Fontana, Pedro Luiz; Antoniazzi, Marta Maria et al. (2015-08-17). “Venomous Frogs Use Heads as Weapons”. Current Biology 25 (16): 2166–2170. doi:10.1016/j.cub.2015.06.061. ISSN 0960-9822. PMID 26255851.
- ^ Bauchot, Roland (1994). Snakes: A Natural History. Sterling. pp. 194–209. ISBN 978-1-4027-3181-5
- ^ “Snake Bites”. A. D. A. M. Inc (2017年10月16日). 2018年9月30日閲覧。
- ^ Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F. (30 July 2014). “Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins”. Genome Biology and Evolution 6 (8): 2088–2095. doi:10.1093/gbe/evu166. PMC 4231632. PMID 25079342 .
- ^ Daltry, Jennifer C.; Wuester, Wolfgang; Thorpe, Roger S. (1996). “Diet and snake venom evolution”. Nature 379 (6565): 537–540. Bibcode: 1996Natur.379..537D. doi:10.1038/379537a0. PMID 8596631.
- ^ Cantrell, F. L. (2003). “Envenomation by the Mexican beaded lizard: a case report”. Journal of Toxicology. Clinical Toxicology 41 (3): 241–244. doi:10.1081/CLT-120021105. PMID 12807305.
- ^ a b c Mullin, Emily (29 November 2015). “Animal Venom Database Could Be Boon To Drug Development”. Forbes 2018年9月30日閲覧。.
- ^ a b Fry, B. G.; Wroe, S.; Teeuwisse, W. (June 2009). “A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus (Megalania) priscus”. PNAS 106 (22): 8969–8974. Bibcode: 2009PNAS..106.8969F. doi:10.1073/pnas.0810883106. PMC 2690028. PMID 19451641 .
- ^ Fry, B. G.; Wuster, W.; Ramjan, S. F. R.; Jackson, T.; Martelli, P.; Kini, R. M. 2003c. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: Evolutionary and toxinological implications. Rapid Communications in Mass Spectrometry 17:2047-2062.
- ^ Fry, B. G.; Vidal, N.; Norman, J. A. et al. (February 2006). “Early evolution of the venom system in lizards and snakes”. Nature 439 (7076): 584–588. Bibcode: 2006Natur.439..584F. doi:10.1038/nature04328. PMID 16292255.
- ^ Benoit, J.; Norton, L. A.; Manger, P. R.; Rubidge, B. S. (2017). “Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques”. PLOS ONE 12 (2): e0172047. Bibcode: 2017PLoSO..1272047B. doi:10.1371/journal.pone.0172047. PMC 5302418. PMID 28187210 .
- ^ Nekaris, K. Anne-Isola; Moore, Richard S.; Rode, E. Johanna; Fry, Bryan G. (2013-09-27). “Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom”. Journal of Venomous Animals and Toxins Including Tropical Diseases 19 (1): 21. doi:10.1186/1678-9199-19-21. PMC 3852360. PMID 24074353 .
- ^ Ligabue-Braun, R.; Verli, H.; Carlini, C. R. (2012). “Venomous mammals: a review”. Toxicon 59 (7–8): 680–695. doi:10.1016/j.toxicon.2012.02.012. PMID 22410495.
- ^ Jørn H. Hurum, Zhe-Xi Luo, and Zofia Kielan-Jaworowska, Were mammals originally venomous?, Acta Palaeontologica Polonica 51 (1), 2006: 1-11
- ^ Wong, E. S.; Belov, K. (2012). “Venom evolution through gene duplications”. Gene 496 (1): 1–7. doi:10.1016/j.gene.2012.01.009. PMID 22285376.
- ^ ((GBD 2013 Mortality and Causes of Death Collaborators)) (17 December 2014). “Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013”. Lancet 385 (9963): 117–171. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442 .
- ^ Pal, S. K.; Gomes, A.; Dasgupta, S. C.; Gomes, A. (2002). “Snake venom as therapeutic agents: from toxin to drug development.”. Indian Journal of Experimental Biology 40 (12): 1353–1358. PMID 12974396.
- ^ Holland, Jennifer S. (February 2013). “The Bite That Heals”. National Geographic. オリジナルの25 May 2018時点におけるアーカイブ。 2018年9月30日閲覧。.
- ^ Fox, Eduardo G.P.; Xu, Meng; Wang, Lei; Chen, Li; Lu, Yong-Yue (May 2018). “Speedy milking of fresh venom from aculeate hymenopterans”. Toxicon 146: 120–123. doi:10.1016/j.toxicon.2018.02.050. PMID 29510162.
- ^ Fox, Eduardo Gonçalves Paterson (2021). “Venom Toxins of Fire Ants”. In Gopalakrishnakone, P.. Venom Genomics and Proteomics. Springer Netherlands. pp. 149–167. doi:10.1007/978-94-007-6416-3_38. ISBN 9789400766495
- ^ Calvete, Juan J. (December 2013). “Snake venomics: From the inventory of toxins to biology”. Toxicon 75: 44–62. doi:10.1016/j.toxicon.2013.03.020. ISSN 0041-0101. PMID 23578513.
- ^ Arbuckle, Kevin; Rodríguez de la Vega, Ricardo C.; Casewell, Nicholas R. (December 2017). “Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals”. Toxicon 140: 118–131. doi:10.1016/j.toxicon.2017.10.026. PMID 29111116 .
- ^ Dawkins, Richard; Krebs, John Richard; Maynard Smith, J.; Holliday, Robin (1979-09-21). “Arms races between and within species”. Proceedings of the Royal Society of London. Series B. Biological Sciences 205 (1161): 489–511. Bibcode: 1979RSPSB.205..489D. doi:10.1098/rspb.1979.0081. PMID 42057.
- ^ McCabe, Thomas M.; Mackessy, Stephen P. (2015). Gopalakrishnakone, P.; Malhotra, Anita. eds. Evolution of Resistance to Toxins in Prey. Toxinology. Springer Netherlands. pp. 1–19. doi:10.1007/978-94-007-6727-0_6-1. ISBN 978-94-007-6727-0
- ^ Nuismer, Scott L.; Ridenhour, Benjamin J.; Oswald, Benjamin P. (2007). “Antagonistic Coevolution Mediated by Phenotypic Differences Between Quantitative Traits”. Evolution 61 (8): 1823–1834. doi:10.1111/j.1558-5646.2007.00158.x. PMID 17683426.
- ^ a b Holding, Matthew L.; Drabeck, Danielle H.; Jansa, Sharon A.; Gibbs, H. Lisle (1 November 2016). “Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations”. Integrative and Comparative Biology 56 (5): 1032–1043. doi:10.1093/icb/icw082. ISSN 1540-7063. PMID 27444525 .
- ^ Calvete, Juan J. (1 March 2017). “Venomics: integrative venom proteomics and beyond”. Biochemical Journal 474 (5): 611–634. doi:10.1042/BCJ20160577. ISSN 0264-6021. PMID 28219972.
- ^ Morgenstern, David; King, Glenn F. (1 March 2013). “The venom optimization hypothesis revisited”. Toxicon 63: 120–128. doi:10.1016/j.toxicon.2012.11.022. PMID 23266311.
- ^ Poran, Naomie S.; Coss, Richard G.; Benjamini, Eli (1987-01-01). “Resistance of California ground squirrels (Spermophilus Beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus Viridis Oreganus): A study of adaptive variation”. Toxicon 25 (7): 767–777. doi:10.1016/0041-0101(87)90127-9. ISSN 0041-0101. PMID 3672545.
- ^ Coss, Richard G.; Poran, Naomie S.; Gusé, Kevin L.; Smith, David G. (1993-01-01). “Development of Antisnake Defenses in California Ground Squirrels (Spermophilus Beecheyi): II. Microevolutionary Effects of Relaxed Selection From Rattlesnakes”. Behaviour 124 (1–2): 137–162. doi:10.1163/156853993X00542. ISSN 0005-7959.
- ^ Holding, Matthew L.; Biardi, James E.; Gibbs, H. Lisle (2016-04-27). “Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey”. Proceedings of the Royal Society B: Biological Sciences 283 (1829): 20152841. doi:10.1098/rspb.2015.2841. PMC 4855376. PMID 27122552 .
- ^ Conant, Roger (1975). A field guide to reptiles and amphibians of Eastern and Central North America. (Second ed.). Boston: Houghton Mifflin. ISBN 0-395-19979-4. OCLC 1423604
- ^ Weinstein, Scott A.; DeWitt, Clement F.; Smith, Leonard A. (December 1992). “Variability of Venom-Neutralizing Properties of Serum from Snakes of the Colubrid Genus Lampropeltis”. Journal of Herpetology 26 (4): 452. doi:10.2307/1565123. JSTOR 1565123.
- ^ Heatwole, Harold; Poran, Naomie S. (1995-02-15). “Resistances of Sympatric and Allopatric Eels to Sea Snake Venoms”. Copeia 1995 (1): 136. doi:10.2307/1446808. JSTOR 1446808.
- ^ Heatwole, Harold; Powell, Judy (May 1998). “Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution”. Toxicon 36 (4): 619–625. doi:10.1016/S0041-0101(97)00081-0. PMID 9643474.
- ^ Zimmerman, K. D.; Heatwole, Harold; Davies, H. I. (1992-03-01). “Survival times and resistance to sea snake (Aipysurus laevis) venom by five species of prey fish”. Toxicon 30 (3): 259–264. doi:10.1016/0041-0101(92)90868-6. ISSN 0041-0101. PMID 1529461.
- ^ Litsios, Glenn; Sims, Carrie A.; Wüest, Rafael O.; Pearman, Peter B.; Zimmermann, Niklaus E.; Salamin, Nicolas (2012-11-02). “Mutualism with sea anemones triggered the adaptive radiation of clownfishes”. BMC Evolutionary Biology 12 (1): 212. doi:10.1186/1471-2148-12-212. ISSN 1471-2148. PMC 3532366. PMID 23122007 .
- ^ Fautin, Daphne G. (1991). “The anemonefish symbiosis: what is known and what is not”. Symbiosis 10: 23–46 .
- ^ Mebs, Dietrich (2009-12-15). “Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans”. Toxicon. Cnidarian Toxins and Venoms 54 (8): 1071–1074. doi:10.1016/j.toxicon.2009.02.027. ISSN 0041-0101. PMID 19268681.
- ^ da Silva, Karen Burke; Nedosyko, Anita (2016), Goffredo, Stefano; Dubinsky, Zvy, eds., “Sea Anemones and Anemonefish: A Match Made in Heaven”, The Cnidaria, Past, Present and Future: The world of Medusa and her sisters (Springer International Publishing): pp. 425–438, doi:10.1007/978-3-319-31305-4_27, ISBN 978-3-319-31305-4
- ^ Nedosyko, Anita M.; Young, Jeanne E.; Edwards, John W.; Silva, Karen Burke da (2014-05-30). “Searching for a Toxic Key to Unlock the Mystery of Anemonefish and Anemone Symbiosis”. PLOS ONE 9 (5): e98449. Bibcode: 2014PLoSO...998449N. doi:10.1371/journal.pone.0098449. ISSN 1932-6203. PMC 4039484. PMID 24878777 .
- ^ Mebs, D. (1994-09-01). “Anemonefish symbiosis: Vulnerability and resistance of fish to the toxin of the sea anemone”. Toxicon 32 (9): 1059–1068. doi:10.1016/0041-0101(94)90390-5. ISSN 0041-0101. PMID 7801342.
- ^ Lubbock, R.; Smith, David Cecil (1980-02-13). “Why are clownfishes not stung by sea anemones?”. Proceedings of the Royal Society of London. Series B. Biological Sciences 207 (1166): 35–61. Bibcode: 1980RSPSB.207...35L. doi:10.1098/rspb.1980.0013.
- ^ a b Litsios, Glenn; Kostikova, Anna; Salamin, Nicolas (2014-11-22). “Host specialist clownfishes are environmental niche generalists”. Proceedings of the Royal Society B: Biological Sciences 281 (1795): 20133220. doi:10.1098/rspb.2013.3220. PMC 4213602. PMID 25274370 .
毒液
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/08 15:51 UTC 版)
この属の種は、被害者に複数の影響を与えるいくつかの神経毒を持っている。毒液は神経系を麻痺させ、血液を凝固して血管を詰まらせる作用があることで知られている。タイパン属はマウスの半数致死量基準で最も強力な毒をもつヘビの一つとされている。ナイリクタイパンは最も強力な毒をもつ地上棲のヘビと考えられており、オーストラリア最大の毒蛇と言われる沿岸タイパンは地上棲のヘビの中で3番目に強力な毒を持つと言われている。中央山脈タイパンは他のタイパン種ほど研究が進んでいないため、その正確な毒性は明らかになっていないが、より強い毒性持つ可能性が指摘されている。 毒性とは別に、咬まれた際に体内に注入される大量の毒による危険も考慮する必要がある。特に沿岸タイパンは大型のため大量の毒を注入することができる。 1950年、アマチュアの爬虫類学者であるKevin Buddenは、タイパンを生きたまま捕獲した最初の人の1人だったが、彼はその過程で噛まれて翌日に亡くなった。数週間後に死んだ個体は、メルボルンの動物学者David Fleayによって毒を抽出され、その毒液を用いて開発された抗毒素は1955年に利用可能になった。 1940年代と1950年代のオーストラリアでのタイパン抗毒素の開発を調査した本『Venom』の中で著者Brendan James Murrayは「抗毒素なしでタイパンの咬傷から生き延びた例は1949年にクイーンズランド州ホープ・ベールで咬まれた先住民Guugu YimithirのGeorge Rosendaleの1例だけだ」と主張している。Murrayは、看護師から後にこの時重篤な状態だったRosendaleから採取した真っ黒に変色した血液のサンプルを後に見せられたと記している。 現在、タイパン属に咬まれた際の治療にはオーストラリアのCSL Limited社製の"CSL Polyvalent antivenom"と"CSL Taipan antivenom"の2つの抗毒素が利用可能である。
※この「毒液」の解説は、「タイパン属」の解説の一部です。
「毒液」を含む「タイパン属」の記事については、「タイパン属」の概要を参照ください。
「毒液」の例文・使い方・用例・文例
毒液と同じ種類の言葉
- 毒液のページへのリンク