コクセター群
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/30 08:46 UTC 版)
この項目「コクセター群」は翻訳されたばかりのものです。不自然あるいは曖昧な表現などが含まれる可能性があり、このままでは読みづらいかもしれません。(原文:en:Coxeter group 03:41, 11 August 2011) 修正、加筆に協力し、現在の表現をより自然な表現にして下さる方を求めています。ノートページや履歴も参照してください。(2011年8月) |
数学においてコクセター群(コクセターぐん、英: Coxeter group)とは鏡映変換で表示できる抽象群のことである。ハロルド・スコット・マクドナルド・コクセターに因んで名づけられた。有限コクセター群は何らかのユークリッド鏡映群(たとえば一般次元正多胞体の対称変換群など)になっている。もちろん、すべてのコクセター群が有限群とは限らないし、すべてのコクセター群をユークリッド的な鏡映や対称変換として記述できるわけでもない。コクセター群は鏡映群の抽象化として導入され(Coxeter 1934)、有限コクセター群の分類は完了している(Coxeter 1935) 。
コクセター群は数学のいくつもの分野に現れる。一般次元正多胞体の対称変換群や単純リー代数のワイル群は有限コクセター群の例であり、ユークリッド平面や双曲平面の正則三角形分割 (regular tessellation) に対応する三角群や無限次元カッツ-ムーディ代数のワイル群は無限コクセター群の例である。
コクセター群に関する標準的な文献としては (Humphreys 1990) や (Davis 2007) などがある。
定義
生成系 S をもつ群 W がコクセター群である、または組 (W, S) がコクセター系 (Coxeter system) であるとは、以下の3条件がすべて満たされるときにいう。
- S は対合からなる: s ∈ S ならば、必ず s2 = 1 が成り立つ。
- 組み紐関係式 (braid relation): s, t ∈ S が s ≠ t であるならば、2 以上のある整数(または ∞)ms,t で (st)ms,t = 1 となるものが取れる。
- それ以外に生成元の間には関係がない。
ただし、ms,t = ∞ は s と t の間に関係がないことを表す。これは次のように書く事もできる。
- s ∈ S ならば s-1 = s が成り立つ。
- s, t ∈ S で s と t が相異なるとき、s と t には関係が無いか、関係がある場合には次が成り立つ; s と t を交互に ms,t 個並べる方法が 2 通りあるが、そのいずれも同じ元を定めるような 2 以上の整数 ms,t が存在する。
- stststst… = tstststs… (両辺とも因数の数は ms,t 個)
- 生成元はそれ以外に関係式を持たない。
また、S = {x1, x2, ..., xn} とすれば以下のように表示できる:
分類
有限コクセター群のコクセター-ディンキン図形を用いた分類が (Coxeter 1935) に述べられている。有限コクセター群は有限次元ユークリッド空間の鏡映群として表現される。
具体的には、有限コクセター群は階数をひとつのパラメータとする三つの無限族 An, BCn, Dn と二次元で一つのパラメータを持つ族 I2(p) がひとつ、さらに六つの例外群 E6, E7, E8, F4 H3, H4 のいずれかとなる。
ワイル群
有限コクセター群は全てではないにしろほとんどがワイル群であり、逆にすべてのワイル群はコクセター群として実現できる。ワイル群となるのは無限族 An, BCn, Dn の各群と例外群 E6, E7, E8, F4 および I2(6)(ワイル群の記法でいうところの G2)であり、ワイル群とならないのは例外群の H3, H4 および無限族 I2(p)(ただし、この中に別のワイル群と一致するものがあるが、それを除く。具体的には
- ..
BCn Cn [4,3n-1] n 2n n! n-次元超立方体 / n-次元交叉正多胞体 ... Dn Bn [3n-3,1,1] n 2n−1 n! n-次元半超立方体 ... E6 E6 [32,2,1] 6 72x6! = 51840 221, 122 E7 E7 [33,2,1] 7 72x8! = 2903040 321, 231, 132 E8 E8 [34,2,1] 8 192x10! = 696729600 421, 241, 142 F4 F4 [3,4,3] 4 1152 正24胞体 G2 - [6] 2 12 正六角形 H2 G2 [5] 2 10 正五角形 H3 G3 [3,5] 3 120 正二十面体/正十二面体 H4 G4 [3,3,5] 4 14400 正120胞体/正600胞体 I2(p) D2p [p] 2 2p 正 p-角形 多胞体の対称変換群
一般次元正多胞体の対称変換群 (symmetry group) は必ず有限コクセター群になり、互いに双対な多胞体は同じ対称変換群を持つ。
任意の次元において、三種類の正多面体の系列を考えることができる。正 n-次元単体の対称変換群は対称群 Sn+1 であり、これを An 型のコクセター群という。n-次元超立方体およびその双対である n-次元交叉多胞体の対称変換群は BCn 型のコクセター群であり、超八面体群とも呼ばれる。
二次元、三次元、四次元の例外的正多面体が上記以外のコクセター群に対応する。二次元の場合は、正多角形の対称変換群である二面体群が系列 I2(p) を成す。三次元であれば、正十二面体およびその双対である正二十面体の対称変換群 H3 が全二十面体群 (full icosahedral group) として知られる。四次元のときは、正24胞体・正120胞体・正600胞体という三種の特別な正多胞体が存在する。はじめの一つは F4 を対称変換群としてもち、残りの二つは互いに双対で対称変換群 H4 を共有する。
Dn, E6, E7, E8 型のコクセター群は、ある種の半正多胞体の対称変換群になる。
アフィンコクセター群
「アフィン・ディンキン図形」も参照「アフィン・ルート系」も参照アフィン・コクセター群 (affine Coxeter groups) もコクセター群の重要なクラスである。アフィン・コクセター群はもはや有限群ではないが、しかしどれもそれを割った商が有限群となるような可換な正規部分群を含む。そしてどの場合でも、得られる剰余群はそれ自身コクセター群となる。アフィン・コクセター群のコクセター図形は対応する剰余群のコクセター図形に余分な頂点をひとつと辺をふたつ加えることによって得られる。例えば n ≥ 2 のとき、 n+1 個の頂点を円形に並べた形の図形が An からこの方法で得られ、対応するコクセター群として An 型のアフィン・ワイル群が得られる。特に n = 2 のとき、これは二等辺三角形による標準的な平面充填の対称変換群として図示することができる。
アフィン・コクセター群の一覧を以下に挙げる。
記号 ヴィットの記号 括弧記法 対応する一様空間充填 コクセター=ディンキン図形 ... ... ... ... 下付の添字はどの場合も頂点数より 1 だけ少なくなっているが、それはこれらが有限の場合のコクセター図形から頂点をひとつ加えて得られることに由来する。
双曲コクセター群
双曲空間における鏡映群(特に双曲三角群が含まれる)を記述する双曲コクセター群が無限に存在する。
元の長さとブリュア順序
対合からなる生成系を一つ選べば、コクセター群上に長さ函数 l を考えることができるようになる。つまり、群の元を生成元をアルファベットとする語として表示するために必要な生成元の数の最小値(ケイリーグラフにおける語の距離にちょうど一致する)を、その元の長さとするのである。各元 v の表示のうち、l(v) 個の生成元の積となっているものを v の簡約表示(最短表示)という。例えば、S3 における互換 (1 3) は二つの簡約表示 (1 2)(2 3)(1 2) および (2 3)(1 2)(2 3) を持つ。また、写像