login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257654
Number of unlabeled rooted trees with n nodes where the outdegrees (branching factors) of adjacent nodes differ by exactly one.
4
0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 1, 3, 3, 1, 2, 6, 6, 3, 6, 11, 11, 9, 15, 23, 24, 25, 39, 48, 52, 67, 96, 107, 122, 174, 242, 247, 295, 448, 598, 598, 744, 1141, 1493, 1493, 1913, 2898, 3730, 3826, 5003, 7362, 9396, 9980, 13201, 18757, 23840
OFFSET
0,14
COMMENTS
These trees are also counted by A260353 and A260403.
EXAMPLE
a(5) = 1: o
. / \
. o o
. | |
. o o
MAPLE
b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0),
`if`(i<1 or v<1 or n<v, 0, add(binomial(A(i, h)+j-1, j)*
b(n-i*j, i-1, h, v-j), j=0..min(n/i, v))))
end:
A:= proc(n, k) option remember; `if`(n=0, 0, add(`if`(j=k, 0,
b(n-1$2, j$2)), j=max(k-1, 0)..min(k+1, n-1)))
end:
a:= n-> add(b(n-1$2, j$2), j=0..n-1):
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, Sum[Binomial[A[i, h]+j-1, j]*b[n-i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]; A[n_, k_] := A[n, k] = If[n==0, 0, Sum[If[j==k, 0, b[n-1, n-1, j, j]], {j, Max[k-1, 0], Min[k+1, n-1]}]]; a[n_] := Sum[b[n-1, n-1, j, j], {j, 0, n-1}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 21 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 25 2015
STATUS
approved