login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260353
Number of unlabeled rooted trees with n nodes where the outdegrees (branching factors) of adjacent nodes differ by at least one.
4
0, 1, 1, 1, 3, 5, 9, 20, 42, 87, 189, 419, 926, 2080, 4724, 10783, 24785, 57374, 133454, 311882, 732084, 1725019, 4078661, 9674563, 23014591, 54894296, 131254246, 314544591, 755369735, 1817530413, 4381176005, 10578753769, 25583847608, 61964393295, 150288117481
OFFSET
0,5
EXAMPLE
a(5) = 5:
: o o o o o
: | | / \ /|\ /( )\
: o o o o o o o o o o o
: / \ /|\ | | |
: o o o o o o o o
: |
: o
MAPLE
b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0),
`if`(i<1 or v<1 or n<v, 0, `if`(n=v, 1, add(binomial(j-1+
A(i, h), j)*b(n-i*j, i-1, h, v-j), j=0..min(n/i, v)))))
end:
A:= proc(n, k) option remember; `if`(n=0, 0,
add(`if`(j=k, 0, b(n-1$2, j$2)), j=0..n-1))
end:
a:= n-> A(n, n):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, If[n==v, 1, Sum[Binomial[j-1+A[i, h], j]*b[n-i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]]; A[n_, k_] := A[n, k] = If[n==0, 0, Sum[If[ j==k, 0, b[n-1, n-1, j, j]], {j, 0, n-1}]]; a[n_] := A[n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 23 2015
STATUS
approved