login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360742
Number T(n,k) of sets of nonempty integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
7
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 2, 0, 1, 4, 6, 5, 3, 0, 1, 5, 10, 10, 7, 4, 0, 1, 6, 14, 19, 16, 10, 5, 0, 1, 7, 19, 30, 32, 24, 14, 6, 0, 1, 8, 26, 46, 57, 52, 35, 19, 8, 0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10, 0, 1, 10, 40, 93, 147, 172, 157, 117, 69, 33, 12
OFFSET
0,9
LINKS
FORMULA
T(n,n) + T(n+1,n) = T(n+2,n+1) for n>=0.
EXAMPLE
T(6,3) = 10: {[1,1,4]}, {[1,2,3]}, {[2,2,2]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[2],[2,2]}, {[3],[1,2]}, {[4],[1,1]}, {[1],[2],[3]}.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 2;
0, 1, 3, 3, 2;
0, 1, 4, 6, 5, 3;
0, 1, 5, 10, 10, 7, 4;
0, 1, 6, 14, 19, 16, 10, 5;
0, 1, 7, 19, 30, 32, 24, 14, 6;
0, 1, 8, 26, 46, 57, 52, 35, 19, 8;
0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10;
...
MAPLE
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i), k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i]]]]];
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[ g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i], k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 15 2023, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A000007, A057427, A001477(n-1) for n>=1.
Main diagonal gives A000009.
T(n+2,n+1) gives A036469.
Row sums give A261049.
T(2n,n) gives A360714.
Cf. A000041, A055884 (similar triangle for multisets), A330463.
Sequence in context: A257654 A167637 A343489 * A109754 A374395 A220074
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 18 2023
STATUS
approved