login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257657
Expansion of f(-x, -x) * f(-x^6, -x^6) / f(x, x^2) in powers of x where f(,) is Ramanujan's general theta function.
2
1, -3, 2, 1, -1, -1, 3, -1, 0, -2, -2, 2, 1, -3, 3, 4, -1, -3, 1, 0, -1, -2, 0, 3, 1, -6, 2, 4, -4, -1, 4, 2, -1, -3, 0, 5, -1, -9, 5, 7, -4, -7, 4, 5, -3, -4, 0, 8, -1, -13, 4, 11, -7, -7, 7, 6, -1, -10, 0, 14, -1, -15, 8, 15, -10, -14, 8, 11, -7, -13, 2, 17
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/24) * eta(q)^3 * eta(q^6)^3 / (eta(q^2)^2 * eta(q^3)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -3, -1, -1, -1, -3, -2, -3, -1, -1, -1, -3, -1, ...].
a(n) = 2 * A260413(n) - A053250(n).
EXAMPLE
G.f. = 1 - 3*x + 2*x^2 + x^3 - x^4 - x^5 + 3*x^6 - x^7 - 2*x^9 - 2*x^10 + ...
G.f. = 1/q - 3*q^23 + 2*q^47 + q^71 - q^95 - q^119 + 3*q^143 - q^167 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ x] QPochhammer[ -x^3] / QPochhammer[ x^3], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^12 + A)), n))};
CROSSREFS
Sequence in context: A210650 A218754 A079948 * A339584 A106689 A348177
KEYWORD
sign
AUTHOR
Michael Somos, Jul 26 2015
STATUS
approved