Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 21 2017 10:14:48
%S 0,1,1,0,0,1,1,0,0,1,1,0,0,2,2,0,1,3,3,1,2,6,6,3,6,11,11,9,15,23,24,
%T 25,39,48,52,67,96,107,122,174,242,247,295,448,598,598,744,1141,1493,
%U 1493,1913,2898,3730,3826,5003,7362,9396,9980,13201,18757,23840
%N Number of unlabeled rooted trees with n nodes where the outdegrees (branching factors) of adjacent nodes differ by exactly one.
%C These trees are also counted by A260353 and A260403.
%H Alois P. Heinz, <a href="/A257654/b257654.txt">Table of n, a(n) for n = 0..400</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%e a(5) = 1: o
%e . / \
%e . o o
%e . | |
%e . o o
%p b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0),
%p `if`(i<1 or v<1 or n<v, 0, add(binomial(A(i, h)+j-1, j)*
%p b(n-i*j, i-1, h, v-j), j=0..min(n/i, v))))
%p end:
%p A:= proc(n, k) option remember; `if`(n=0, 0, add(`if`(j=k, 0,
%p b(n-1$2, j$2)), j=max(k-1, 0)..min(k+1, n-1)))
%p end:
%p a:= n-> add(b(n-1$2, j$2), j=0..n-1):
%p seq(a(n), n=0..60);
%t b[n_, i_, h_, v_] := b[n, i, h, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, Sum[Binomial[A[i, h]+j-1, j]*b[n-i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]; A[n_, k_] := A[n, k] = If[n==0, 0, Sum[If[j==k, 0, b[n-1, n-1, j, j]], {j, Max[k-1, 0], Min[k+1, n-1]}]]; a[n_] := Sum[b[n-1, n-1, j, j], {j, 0, n-1}]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Feb 21 2017, translated from Maple *)
%Y Cf. A000081, A259863, A260353, A260403, A253244.
%K nonn
%O 0,14
%A _Alois P. Heinz_, Jul 25 2015