login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257656
Expansion of f(x) * f(x^3) * f(-x^4)^2 * chi(-x^6)^2 in powers of x where chi(), f() are Ramanujan theta functions.
1
1, 1, -1, 1, -1, -4, -1, -6, -1, 1, 4, 12, -1, 14, 6, -4, -1, -16, -1, -18, 4, -6, -12, 24, -1, 21, -14, 1, 6, -28, 4, -30, -1, 12, 16, 24, -1, 38, 18, 14, 4, -40, 6, -42, -12, -4, -24, 48, -1, 43, -21, -16, -14, -52, -1, -48, 6, -18, 28, 60, 4, 62, 30, -6, -1
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2)^3 * eta(q^4) * eta(q^6)^5 / (eta(q) * eta(q^3) * eta(q^12)^3) in powers of q.
Euler transform of period 12 sequence [1, -2, 2, -3, 1, -6, 1, -3, 2, -2, 1, -4, ...].
a(n) = a(3*n) = (-1)^n * A109039(n). a(2*n) = A109039(n).
Multiplicative with a(2^e) = -1, a(p^e) = ((p*Kronecker(12, p))^(e+1) - 1)/(p*Kronecker(12, p) - 1) for odd prime p. - Andrew Howroyd, Jul 27 2018
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(3)) = 0.237425... . - Amiram Eldar, Jan 29 2024
EXAMPLE
G.f. = 1 + x - x^2 + x^3 - x^4 - 4*x^5 - x^6 - 6*x^7 - x^8 + x^9 + 4*x^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x] QPochhammer[ -x^3] QPochhammer[ x^4]^2 QPochhammer[ x^6, x^12]^2, {x, 0, n}];
a[ n_] := If[ n<1, Boole[n == 0], Times @@ (If[ # < 5, -(-1)^#, With[ {t = # KroneckerSymbol[ 12, #]}, (t^(#2 + 1) - 1 ) / (t - 1)]]& @@@ FactorInteger @ n)];
PROG
(PARI) {a(n) = if( n<1, n==0, -sumdiv(n, d, d * kronecker( 12, d) * (-1)^(n/d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A) * eta(x^6 + A)^5 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^3), n))};
(PARI) {a(n) = my(A, p, e, t); if( n<1, n==0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, -(-1)^p, t = p * kronecker( 12, p); (t^(e+1) - 1) / (t - 1))))};
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jul 25 2015
STATUS
approved