login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343489
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=1..n} k^(gcd(j, n) - 1).
2
0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 2, 0, 1, 4, 6, 4, 4, 0, 1, 5, 11, 12, 5, 2, 0, 1, 6, 18, 32, 20, 6, 6, 0, 1, 7, 27, 70, 85, 42, 7, 4, 0, 1, 8, 38, 132, 260, 260, 70, 8, 6, 0, 1, 9, 51, 224, 629, 1050, 735, 144, 9, 4, 0, 1, 10, 66, 352, 1300, 3162, 4102, 2224, 270, 10, 10
OFFSET
0,9
FORMULA
G.f. of column k: Sum_{j>=1} phi(j) * x^j / (1 - k*x^j).
T(n,k) = A185651(n,k)/k for k > 0.
T(n,k) = Sum_{d|n} phi(n/d)*k^(d - 1).
EXAMPLE
Square array begins:
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 3, 6, 11, 18, 27, 38, ...
2, 4, 12, 32, 70, 132, 224, ...
4, 5, 20, 85, 260, 629, 1300, ...
2, 6, 42, 260, 1050, 3162, 7826, ...
MATHEMATICA
T[n_, k_] := Sum[If[k == (g = GCD[j, n] - 1) == 0, 1, k^g], {j, 1, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 17 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, k^(gcd(j, n)-1));
(PARI) T(n, k) = if(n==0, 0, sumdiv(n, d, eulerphi(n/d)*k^(d-1)));
CROSSREFS
Columns k=0..5 give A000010, A001477, A034738, A034754, A343490, A343492.
Main diagonal gives A056665.
Sequence in context: A297323 A257654 A167637 * A360742 A109754 A374395
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Apr 17 2021
STATUS
approved