Navigating Autism Spectrum through Visual Narratives and Analytical Insights.
By Evan Miller July 24, 2023 About which one cannot speak, one must pass over in silence. âWittgenstein Do you see the off-by-one error in this formula? \[ \textrm{Attention}(Q, K, V) = \textrm{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V \] The attention formula is the central equation of modern AI, but thereâs a bug in it that has been driving me nuts the last week. I tried writing a serious-look
Prompt Engineering Guide ããã³ããã¨ã³ã¸ãã¢ãªã³ã°ã¯ãè¨èªã¢ãã«ï¼LMsï¼ãå¹ççã«ä½¿ç¨ããããã®ããã³ãããéçºããã³æé©åããæ¯è¼çæ°ããå¦ååéã§ããããã³ããã¨ã³ã¸ãã¢ãªã³ã°ã®ã¹ãã«ã身ã«ã¤ãããã¨ã§ã大è¦æ¨¡è¨èªã¢ãã«ï¼LLMsï¼ã®è½åã¨éçãããç解ãããã¨ãã§ãã¾ãã ç 究è ã¯ãããã³ããã¨ã³ã¸ãã¢ãªã³ã°ã使ç¨ãã¦ã質åå¿çãç®è¡æ¨è«ãªã©ã®ä¸è¬çãªããã³è¤éãªã¿ã¹ã¯ã®LLMsã®è½åãåä¸ããã¾ããéçºè ã¯ãLLMsããã®ä»ã®ãã¼ã«ã¨ã®ã¤ã³ã¿ãã§ã¼ã¹ã¨ãªãå¼·åºã§å¹æçãªããã³ããã¯ããã¯ãè¨è¨ããããã«ããã³ããã¨ã³ã¸ãã¢ãªã³ã°ã使ç¨ãã¾ãã ããã³ããã¨ã³ã¸ãã¢ãªã³ã°ã¯ãããã³ããã®è¨è¨ã¨éçºã«éãããLLMsã¨ã®ã¤ã³ã¿ã©ã¯ã·ã§ã³ããã³éçºã«å½¹ç«ã¤å¹ åºãã¹ãã«ã¨æè¡ãå«ã¿ã¾ããããã¯ãLLMsã¨ã¤ã³ã¿ãã§ã¼ã¹ãããã¨ããã«ããããã¨ãè½åãç解ãããã¨
ChatGPTã®ã¤ããã¨ããã¯ãè«çå¦çãå¿ è¦ã ã¨æã£ã¦ãããã¨ãããã¤ã¯å¤æ°ã®ãã¼ã¿ãå¦ç¿ããã確çå¦çã§è§£æ±ºå¯è½ã ã¨ç¤ºãããã¨ã ã¨æãã¾ãã ãã¨ãã°ããã®ããã«æ£è¦è¡¨ç¾ã«ãããããæååãçæããã«ã¯ãç¹å¥ã«å°ç¨ã®è«çå¦çãå¿ è¦ã ã¨æã£ã¦ãã¾ããã åã®ããã°ã®ã¨ãã«ã¯ç¹æ®å¦çãå¿ è¦ã ã¨èãã¦ã¾ãããã ã¦ã½ã¯ã¦ã½ã¨è¦æãã人ãããªãã¨ChatGPTã使ãã®ã¯é£ãã - ããã ã®Hatena ãã©ã123_45678world.mdã¯ãããããã®ã«ãããããªãã¨è¨ã£ã¦ããã®ã§ããã®ãããªèª¤ããå ¥ããã¨ãèããã¨ãã©ãã確çå¦çã ãã§ãã£ã¦ããããã§ãã èãã¦ã¿ãã¨ã3層以ä¸ã®ãã¥ã¼ã©ã«ãããã§ããã°è«çç´ åãåç¾ã§ããã®ã§ããã£ã¼ãã©ã¼ãã³ã°ã§è«çå¦çã模å£ãããã¨ã¯å¯è½ãªãã§ãããã ããã¯ãããã²ã¼ã·ã§ã³ã§ãã¥ã¼ã©ã«ãããã®å¦ç¿ - ããã ã®Hatena ããããè«çã¯ãå¤æ°ã®
(ææ°SSD IOã¯PCIe x4ã§ããããææãããã¨ããããã¾ããï¼ ã¯ããã« ã©ã®å¦çã§å¾éãã¦ããã調ã¹ã åå¦çã®é度æ¹åæ¹æ³ ãã¼ã¿èªã¿è¾¼ã¿é度ã®æ¹å ãã¼ã¿åå¦çé度ã®æ¹å GPUå¦çé度ã®æ¹å ã³ã³ãã¥ã¼ãã£ã³ã°ã«ã¤ãã¦ã®ä»è¨äº ã¯ããã« Kaggle Advent Calendar 2022 8æ¥ç®ã§ãã çªç¶ã§ãããããªãã¯DNNå¦ç¿æã«ã©ã®å¦çã§å¦ç¿é度ãå¾éãã¦ãããææ¡ãã¦ã¾ããï¼ DNNå¦ç¿ã«ã¯å³ã«ç¤ºãããã«å¤§ãã3ã¤ã®è¦ç´ ãããã¾ãï¼ ï¼SSDããã®ï¼ãã¼ã¿èªã¿è¾¼ã¿ ï¼CPUã«ããï¼ãã¼ã¿åå¦ç ï¼GPUã«ããï¼DNNè¨ç® å¦ç¿æã®ãã¼ã¿ã®æµãã¨ãã¦ã¯ SSDãããã¼ã¿ãèªã¿è¾¼ã¾ããCPUã«éããã(SATA or PCIe) CPUã«ã¦augmentationãæ£è¦åãªã©ã®åå¦çãè¡ãããGPUã«ãã¼ã¿ãéããã(PCIe x16) GPUã«ã¦DNNã®è¨ç®ã»
Machine Learning Advent Calendar 2015 1æ¥ç®ã®ä¼ç»ã§ãï¼ æ©æ¢°å¦ç¿ã»äººå·¥ç¥è½ç³»ã®å½éä¼è°ï¼ICML, NIPS, AAAIãªã©ï¼ã®ãã¥ã¼ããªã¢ã«ãè«æãçºãããã¨ã®ãã人ãªãï¼Submodular Functionï¼å£ã¢ã¸ã¥ã©é¢æ°ï¼ã¨ããåèªã«è¦è¦ããããããããã¾ããï¼å®éï¼ICML 2013ï¼AAAI 2015ãä»å¹´ã®IBISã§ãå£ã¢ã¸ã¥ã©é¢æ°ã®ãã¥ã¼ããªã¢ã«è¬æ¼ããªããã¦ãã¾ãï¼ä»åã¯ï¼å£ã¢ã¸ã¥ã©é¢æ°ã«ã¤ãã¦ããªãã¥ã¢ã§è§£èª¬ãããã¨æãã¾ãï¼ å£ã¢ã¸ã¥ã©é¢æ°ã¨ã¯ å£ã¢ã¸ã¥ã©é¢æ°ã¯éåé¢æ°ï¼ããéåã®é¨åéåãå¼æ°ã«åãï¼å®æ°å¤ãè¿ãé¢æ°ï¼ã®ä¸ç¨®ã§ãï¼å ·ä½çã«ã¯ä»¥ä¸ã®å®ç¾©ãæºããé¢æ°ã§ãï¼ $f: 2^E \to \mathbb{R}$ ãå£ã¢ã¸ã¥ã©é¢æ° $\iff$ å ¨ã¦ã®$X \subseteq Y$ 㨠$i \not\in Y$ ã«å¯¾ãã¦
æ©æ¢°å¦ç¿ã®ããã»ã¹ãèªååãããAutoMLãããæ¨ä»å¾ã ã«è©±é¡ã«ãªã£ã¦ãã¦ãã¾ãã æ¬è¨äºã§ã¯ãã®AutoMLã«ã¤ãã¦ãã¾ã ç¥èã®ãªã人ã§ãç°¡åã«ç解ã§ããããã«ããªãã¹ããããããã解説ãã¦ããã¾ãã ã¾ãã¯ã©ã®ãããªãã®ãªã®ãã¨ãã£ãåºæ¬çãªå 容説æãè¡ã£ãä¸ã§ãå ·ä½çã«ã©ã®ãããªæ´»ç¨ã¡ãªãããããã®ããç解ããããã«ã¯ä»£è¡¨çãªAutoMLãã¼ã«ããç´¹ä»ãã¦ããã¾ãã AutoMLã¨ã¯ AutoMLï¼Automated Machine Learningï¼ã¨ã¯ç´è¨³ããã¨ãèªååãããæ©æ¢°å¦ç¿ãã§ãããæ©æ¢°å¦ç¿ã¢ãã«ã®è¨è¨ãæ§ç¯ãèªååãããã¨ãã¾ãã¯ãã®ããã®ææ³å ¨è¬ãæãã¾ãã ä¾ãã°ã1è¡ã®ããã°ã©ãã³ã°ã³ã¼ãã ãã§æ©æ¢°å¦ç¿ã®æ©è½ãå¼ã³åºãããããªã¤ã¡ã¼ã¸ã§ããå®éãAutoMLã®æ©è½ä»ãã®ãã¬ã¼ã ã¯ã¼ã¯ãåå¨ãã¾ãããã®ãã¬ã¼ã ã¯ã¼ã¯ã¯ãæ©æ¢°å¦ç¿ã®æ©è½ãç°¡åã«å¼ã³åºããããã«ãã
é½å ã®äºæ¥ä¼ç¤¾ã§åæãWebãã¼ã±ãã£ã³ã°ã®ä»äºããã¦ãã¾ãã大å¦ã»å¤§å¦é¢ã§ã¯çµæ¸å¦ãéãã¦çµ±è¨è§£æãè¡ããªã©ãã¦ããã¾ãããä¼æ¥ã«å¤ãã¦ããã¯ãæ©æ¢°å¦ç¿ãããã¹ããã¤ãã³ã°ãã¯ãã¼ãªã³ã°æè¡ãªã©ã«é¢å¿ãæã£ã¦ãã¾ãã Twitterã¢ã«ã¦ã³ã Mr_Sakaue( SKUE ) GitHub èªæ¸ã¡ã¼ã¿ã¼ ã»ãããã®ãªã¹ã ä»äºã§ãããããªä¼ç¤¾ã§ãã¼ã¿ãµã¤ã¨ã³ã¹ã£ã¦ã©ã使ããã¦ããã®ã§ããï¼ã¨èããããã¨ããããèªåã¨ãã¦ã¯ãªãã¨ãªãããæ´ãã¦ããªããªãç¥ã£ããã¶ãããããªããªã¨æãã¨ããããã£ãã®ã§ãããæåããªãµã¼ãããã¦ã¿ããã¨æãã¾ããã 2022/3/6ã®æ®µéã§ã¯11ã¤ã®å¸å ´ãããªãã§ãããæçµçã«ã¯30å¸å ´ãç®æãã¾ãã ã2021/11/27追è¨ã å ¬éããã¨ããããããªãã«ãã®è¨äºã«é¢å¿ãæã£ã¦ãã ãã£ãæ¹ãå¤ãã£ããããªã®ã§ãå°ããã¤äºä¾ãåãã¦ãããã¨æãã¾ãã æ¥ç
ã¿ãªãã¾ã¯"The Causal Revolution" (å æé©å½)ã¨ããè¨èãèãããã¨ãããã§ããããï¼ ç§ã¯ä»æ(2021å¹´6æ)ã«åãã¦ç¥ãã¾ãããGoogle Trendsã§ããã¼ã¿ä¸è¶³ã«ãããã¬ã³ãã表示ããã¾ããã ã¤ã¾ãã¾ã å ¨ç¶ãã¤ãã¼ãªæ¦å¿µã§ãèãããã¨ããªãã»ããèªç¶ãã¨æããã¾ãããããã¯ãæ¥ããã¨ç¢ºä¿¡ããããæ¬è¨äºãæ稿ãã¾ããããã®ç¢ºä¿¡ã®æ ¹æ ã®ç®æãè¨äºä¸ã§å¤ªåã§æ¸ããä»ãæå¾ã«ãã¾ã¨ãããããæ¬è¨äºãèªã価å¤ããããããã®å¤æã«ã¯å ã«ãã¡ããèªãã§ããã£ã¦ãããããããã¾ãããããããªãããå æé©å½ãªããçµ±è¨çå ææ¨è«ã¯å¦ã¶ä¾¡å¤ã®ããåéã§ããæ¬è¨äºãèªã¾ãªãã¦ãä¸è¨ã«æããæ¸ç±ãæªèªã®æ¹ã¯ãã²ä¸èªãã¦ã¿ã¦ãã ãããQiitaã§ãå ææ¨è«ã«ã¤ãã¦ã®è¨äºã¯ããã¤ãããã¾ããããããç§ãæåããç¹ãæ示åããè¨äºã¯è¦å½ãããªãã£ãããæ¬è¨äºãæ稿ãã¾ããã ãã®è¨
ã¯ããã« ä¸è¬çãªç·å½¢æå°äºä¹æ³ $$ \text{argmin}_\mathbf{x} \bigl\vert \mathbf{y} - \mathrm{A} \mathbf{x} \bigr\vert^2 $$ ã®è§£ $\mathbf{x}$ ãæ±ããã¨ãããããªã·ã¼ã³ã¯ãããã¨ããã§åºã¦ãã¾ãããªããã®è§£ã¯ $$ \mathbf{x}^\mathrm{opt} = \bigl(\mathrm{A}^\top \mathrm{A}\bigr)^{-1} \mathrm{A}^\top \mathbf{y} $$ ã¨ãªãã¾ããå®è£ ããéã¯ãæ¢åã®ã©ã¤ãã©ãªãç¨ãããã¨ãå¤ãã¨æãã¾ããä¾ãã° python ã®å ´åã ã¨ããã°ããã§ãããã ï¼ããã§ã¯æ¬é¡ã§ãªãã®ã§è§¦ãã¾ããããéè¡å $(\mathrm{A^\top A})^{-1}$ ãè¨ç®ãã¦ãã $\mathbf{A^\top y}
OpenAIã¯GPT-3ã®æ¬¡ã®ç 究ãå§ãã¦ãã¾ãï¼ ä¸éãGPT-3ã®ãã¢ã«æ¹§ãä¸ããä¸ï¼OpenAIã¯Scaling Lawã«é¢ãã2æ¬ã®è«æãã²ã£ããã¨å ¬éãã¾ããï¼ Scaling Lawãä¸è¨ã§èª¬æãããªããTransformerã®æ§è½ã¯ãã£ã3ã¤ã®å¤æ°ã®ã¹ãä¹åã«æ¯é ããã¦ãããã¨ãããã®ã§ãï¼ Scaling Lawã¯ããåä½ã ããªãèå³æ·±ã話ã§çµããããããã¾ããï¼å®éã«è±èªåã§ããã¾ã話é¡ã«ããã£ã¦ãã¾ããï¼ãããï¼ãã®æ³åã®æ¬å½ã®åãã«æ°ã¥ãã¦ããç 究è ããã¦ï¼ãªã話é¡ã«ãªããªãã®ãå°æãã¦ãã¾ãï¼ I am curious why people are not talking more about the OpenAI scaling law papers. For me, they seem very significant. What I heard so far:
Machine Learning Casual Talksã¯ãæ©æ¢°å¦ç¿ãç¨ããã·ã¹ãã ãå®éç¨ãã¦ãã話ãä¸å¿ã«ãå®è·µçãªæ©æ¢°å¦ç¿ã«é¢ãã¦æ°è»½ã«è©±ãä¼ã§ããå®éã«éç¨ãã¦ããä¸ã§ã®å·¥å¤«ããç¥è¦ãå ±æãã¾ããä»åã¯ãABEJAã®æé¨åææ°ããæç®ãç´¹ä»ããªãããèªç¤¾ã®ABEJA Platformã§ã®å®è·µä¾ã交ããAWSç°å¢ã«ãããæ©æ¢°å¦ç¿ããã¸ã§ã¯ãã®ãã¹ããã©ã¯ãã£ã¹ã解説ãã¾ãããå¾åã¯å®éã®æ©æ¢°å¦ç¿ã®æ¹æ³ã«ã¤ãã¦ãé¢é£è³æ1ãé¢é£è³æ2 ãªã½ã¼ã¹ã¨ã³ã¹ãã®æé©åãããã¦ãæ©æ¢°å¦ç¿ã¸ã§ãã®å®è¡æ¹æ³ æé¨åææ°ï¼ä»¥ä¸ãæé¨ï¼ï¼ã§ã¯ç¶ãã¦ãããªã½ã¼ã¹ã¨ã³ã¹ããã©ãæé©åãããï¼ãã¨ãæ©æ¢°å¦ç¿ã¸ã§ããã©ãå®è¡ãããï¼ããåæã«èª¬æãããã¨æãã¾ãã ãããããã¨ã¨ãã¦ã¯ãå¯è½ãªãããã³ã¹ããæãã¦ãã§ãå®å®ããè¨ç®æ©ã¯ã©ã¹ã¿ãä½ããããå®ãããæªããããããã¡ã£ã¦ãã¨ã§ããã ããããã¹ã±ã¼ãª
(Image by Pixabay) æè¿ã«ãªã£ã¦ããããªç´ æ´ãããè³æãå ¬éããã¦ãããã¨ãç¥ãã¾ããã ãã®è³æèªä½ã¯èè ã®Moe Uchiikeãããæ±å¤§ã§ã®è¬ç¾©ã«ç¨ãããããã®ã ã¨ã®ãã¨ã§ããããã®å 容ã®æ±ç¨æ§ã®é«ããããããã¯å ¨ã¦ã®æ©æ¢°å¦ç¿ãçµ±è¨å¦ãå®åã§ç¨ãã人ã ãå¿ ãèªãã¹ãããã¥ã¡ã³ããã¨è¨ã£ã¦ãéè¨ã§ã¯ãªãã¨æããã¾ãã æ£ç´è¨ã£ã¦ãã®è³æã®å®æ度ãé«éããã®ã§ãããªã¨ããã§åãããã ããã è«ããã¾ã§ããªãã¨æãã®ã§ãå 容ã®è©³ç´°ã«ã¤ãã¦ã¯çãããèªèº«ã§ã¾ãã¯ä¸è¨ãªã³ã¯ããç²¾èªãã¦ããã ããã°ã¨æãã¾ãããã®ä¸ã§ãä»åã®è¨äºã§ã¯ãæ©æ¢°å¦ç¿ãçµ±è¨å¦ãã社ä¼å®è£ ããããã¨ãããã¨ãã©ããããã¨ãªã®ãã«ã¤ãã¦ããã®è³æãä¸æ·ãã¨ããä¸ã§ããã«åèªèº«ã®çµé¨ãè¦èãå ãã¦èå¯ãããã¨ã綴ã£ã¦ã¿ã¾ãã æ©æ¢°å¦ç¿ãçµ±è¨å¦ã¨ã社ä¼ã¨ã®ãã®ã£ããã æ©æ¢°å¦ç¿ãçµ±è¨å¦ãã社ä¼ã«ã馴æã¾ããã
Deep Learning with PyTorch Download a free copy of the full book and learn how to get started with AI / ML development using PyTorch Deep Learning with PyTorch provides a detailed, hands-on introduction to building and training neural networks with PyTorch, a popular open source machine learning framework. This full book includes: Introduction to deep learning and the PyTorch library Pre-trained n
ããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ã®å¦ç¿ æ®åçã PDF main.pdf (last update : 2020/01/09) æé»éä¿¡å£ã¸ã®ãªã³ã¯ ä½åç´¹ä»ï¼ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ã®å¦ç¿æ®åç ã©ã¤ã»ã³ã¹ ã¯ãªã¨ã¤ãã£ãã»ã³ã¢ã³ãº 表示 3.0 éç§»æ¤ TeXã½ã¼ã¹ https://github.com/herumi/prml/ èè å ææ»ç@herumi(herumi@nifty.com)
ã½ããã¦ã§ã¢ãã¹ãã®å®è¡ãæ©æ¢°å¦ç¿ã§å¹çåãããJenkinsä½è ã®å·å£æ°ãç«ã¡ä¸ãããLaunchableãã§å®ç¾ãããã¨ãã¦ãããã¨ã¨ã¯ï¼åç·¨ï¼ Jenkinsã®ä½è ã¨ãã¦ç¥ãããå·å£èä»æ°ã¯ãæ¨å¹´ç±³å½ã§æ°ä¼ç¤¾ãLaunchableããç«ã¡ä¸ããæ¥æ¬ã«ããã®100ï¼ åä¼ç¤¾ã§ããLaunchable Japanãè¿æ¥ä¸ã«ç«ã¡ä¸ãäºå®ã§ãã Jenkinsã®ç»å ´ããã¹ãããã«ãã®èªååãä¿é²ããã½ããã¦ã§ã¢ã®éçºçç£æ§ãåä¸ããããã¨ã¯æããã§ããããå·å£æ°ã«ããã¨ãLaunchableã¯æ©æ¢°å¦ç¿ãªã©ã®æè¡ãç¨ãã¦ãããããã«åé²ããããã®ã ã¨ãã¦ãã¾ãã ã¤ã³ã¿ãã¥ã¼ãè¡ã£ã5ææ«ã®æç¹ã§ãå社ã¯ç±³å½ã«6人ãæ¥æ¬ã«4人ã¨10人ã»ã©ã®ä½å¶ã§è£½åéçºãé²ãã¦ãã¾ãã æããã¦Launchableã¯ã©ã®ãããªãã¸ã§ã³ã§ä½ãå®ç¾ãããã¨ãã¦ããã®ããåç¤¾å ±ååµæ¥è å ¼å ±åCEOã®å·å£æ°ã¨ãLaun
cvpaper.challenge ã® ã¡ã¿ãµã¼ãã¤çºè¡¨ã¹ã©ã¤ãã§ãã cvpaper.challengeã¯ã³ã³ãã¥ã¼ã¿ãã¸ã§ã³åéã®ä»ãæ ãããã¬ã³ããåµãåºãææ¦ã§ããè«æãµããªä½æã»ã¢ã¤ãã£ã¢èæ¡ã»è°è«ã»å®è£ ã»è«ææ稿ã«åãçµã¿ãå¡ããç¥èãå ±æãã¾ãã2020ã®ç®æ¨ã¯ããããä¼è°30+æ¬æ稿ããããã¨ã§ãã http://xpaperchallenge.org/cv/ Read less
ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã¯ããã¸ãã¹ãã¼ã ãä¸å¸ããããã¾ãã¾ãªãã¼ã¿åæãä¾é ¼ããã¾ããæ¬æ¥èªåãããããã£ããã¼ã¿åæã¨ãã¡ãã£ã¨éãã¨ããä¸ä¸è´ã¯ããã¾ãããï¼ ããããä¸ä¸è´ã¯ããã¼ã¿åæã¨ãããã®ãæ½è±¡çã§ã人ã«ãã£ã¦æå¾ å¤ãéãããã§ãã ã§ã¯ãã©ã®ããã«åæããã°ãããããã®èãæ¹ããWantedly社ã®æ¾æåªä¹æ°ãèªãã¾ãã ãã¼ã¿åæã«æ±ãããã®ã¯ã人ã«ãã£ã¦éã æ¾æåªä¹æ°ï¼ããã¼ã¿åæã®è§£å度ãä¸ããããã¨ããã¿ã¤ãã«ã§çºè¡¨ãã¾ãããããããé¡ããã¾ãã ã¾ãèªå·±ç´¹ä»ã§ããæ¾æåªä¹ã¨ç³ãã¾ããWantedlyã¨ããä¼ç¤¾ã®æ¨è¦ãã¼ã ï¼ã¬ã³ã¡ã³ãã¼ã·ã§ã³ãã¼ã ï¼ã§ããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã¨ãã¼ã ãªã¼ãããã£ã¦ãã¾ããæ å ±æ¤ç´¢ã®åéã¨æ©æ¢°å¦ç¿ã«èå³ãããã¾ããæ¬æ¥ã2020å¹´ã§ã®åç»å£ã«ãªãã¾ãã ã¾ãã¯ã¿ãªããããã¼ã¿åæã¯ãã¾ããã£ã¦ãã¾ããï¼ãèªä¿¡ãæã£ã¦ãç§ã¯ãã¼ã¿å
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}