Nutch is a highly extensible, highly scalable, matured, production-ready Web crawler which enables fine grained configuration and accomodates a wide variety of data acquisition tasks. Scalable Relying on Apache Hadoop⢠data structures, Nutch is great for batch processing large data volumes but can also be tailored to smaller jobs. Pluggable Out of the box Nutch offer powerful plugins i.e., parsing
Facebook (s fb) is at it again, building more software to make Hadoop a better way to do big data at web scale. Its latest creation, which the company has also open sourced, is called Corona and aims to make Hadoop more efficient, more scalable and more available by re-inventing how jobs are scheduled. As with most of its changes to Hadoop over the years â including the recently unveiled AvatarNod
æè¿ï¼ãã£ã±ãä¸åã²ãã¿ããã®æ²ãã¨ã³ãã¬ã¹ã«è´ãã¦çããå¾ã¦ãã¾ãï¼ãã¡ãããã¯ã«ã¹ä½ããæé«ã§ãï¼ã¿ãªããã¯ä½ã§çããå¾ã¦ãã¾ãã§ããããï¼ããã«ã¡ã¯ï¼æè¡é¨ã®ç³å·æã§ãï¼ ä»¥åï¼ãmixi ã®è§£æåºç¤ã¨Apache Hive ã§ã® JSON ãã¼ãµã®æ´»ç¨ã®ç´¹ä»ã㧠mixi ã«ããã Hadoop/ Hive ã®æ´»ç¨ã®ä»æ¹ã«ã¤ãã¦è¨äºãæ¸ããã¦ããã ãã¾ããï¼ä»åã®è¨äºã§ã¯ï¼ã¡ãã£ã¨è§¦ãã¦ãã Hive ãªã©ã§å®æå®è¡ããå¿ è¦ã®ããå¦çãã¯ã¼ã¯ããã¼ã¨ãã¦å®ç¾©ãããã¬ã¼ã ã¯ã¼ã¯ã«ã¤ãã¦æ¸ãã¾ãï¼ æ¬æç« ã®æ§æ ã¾ãæåã«ï¼ä»åãç´¹ä»ãããã¼ã¿è§£æç¨ã¯ã¼ã¯ããã¼ãã¬ã¼ã ã¯ã¼ã¯ Honey ã¨ã¯ä½ãï¼ãªãä½ã£ãã®ãã説æãã¾ãï¼ã¤ãã«ï¼ã©ã®ãããªæ§æãæ©è½ãããã®ããç°¡åã«èª¬æãã¾ãï¼ããããå ·ä½çãªãã¼ã¿è§£æå¦çãè¨è¿°ããæ¹æ³ã«ã¤ãã¦èª¬æãã¾ãï¼ãã®ä¸ã§ï¼å®åçãªå¦çã YAML ã¨ã
ãã°ã®åéãscribeã§ãããããï¼ ã¨æã£ããREADMEã«æ¸ãã¦ããéãã«ãããã¨ãã¦ããã¾ããããä¸è»¢å «åããããããã®ä¸hdfsã«æ¸ãè¾¼ããã¨ãããHadoopã¾ããã§æ´ã«è¦æ¶ã®æ¥ã ãéãã¨ããè¦é£ã®éã®ããããããå®èµ°ããã®ã§ãããã«ã¤ãã¦æ¸ãã¦ã¿ãã æ£ç´ã«è¨ã£ã¦ããªããããã¼ã«ãã£ã¤ããããåããã¤ããªãã§ãã¦ããããå¤å大ä¸å¤«ã ãããç´°ããåé¡ã«ã¤ãã¦ã¯ãç¥ããã (1/24è¿½è¨ CentOS 5.5 ã§ããã«ãã§ããã®ã§ä½ç®æãã«è¿½è¨ãã¾ãã) ãªãä»å㯠Fedora 13 ã§å®è¡ãã¾ããã(01/24追è¨)CentOS 5 ã ã¨boostãå¤ãã®ã§ããããèªåã§ã©ãã«ãããå¿ è¦ããã(ç´ ã®CentOS 5.5ã ã¨scribeã®ãã«ãæã«boostã®ãã¼ã¸ã§ã³ 1.36 以éãè¦æ±ããã¦å¤±æãã)ãUbuntu ã Debian ã ã¨å²ã¨ãããããªè©±ã¯å¤ããã試ãã¦ãª
æ¥çããã ã®ã¨ã³ã¿ã¼ãã©ã¤ãº Hadoop ä¼æ¥ Cloudera ã«å ¥ç¤¾ãã¾ãã http://www.cloudera.co.jp/ ä»å¹´ã®6æã«ããå¹³æï¼ï¼å¹´åº¦ ç£å¦é£æºã½ããã¦ã§ã¢å·¥å¦å®è·µäºæ¥å ±åæ¸ãã¨ããããã¥ã¡ã³ã群ãçµç£çããå ¬è¡¨ããã¾ããã ãã®ãã¡ã®ä¸ã¤ã«ãNTTãã¼ã¿ã«å§è¨ãããHadoopã«é¢ããå®è¨¼å®é¨ã®å ±åæ¸ãããã¾ããã®ã§ãä»æ´ãªããèªãã§ã¿ããã¨ã«ãã¾ããã Hadoopçéã®äººã¯ããã¿ããªã¨ã£ãã«èªãã§ãã®ããããã¾ãããã©ã http://www.meti.go.jp/policy/mono_info_service/joho/downloadfiles/2010software_research/clou_dist_software.pdf ãé«ä¿¡é ¼ã¯ã©ã¦ãå®ç¾ç¨ã½ããã¦ã§ã¢éçºï¼åæ£å¶å¾¡å¦çæè¡çã«ä¿ããã¼ã¿ã»ã³ã¿ã¼é«ä¿¡é ¼åã«åããå®è¨¼äºæ¥ï¼ãã¨ãã
ã¤ãã¼æ ªå¼ä¼ç¤¾ã¯ã2023å¹´10æ1æ¥ã«LINEã¤ãã¼æ ªå¼ä¼ç¤¾ã«ãªãã¾ãããLINEã¤ãã¼æ ªå¼ä¼ç¤¾ã®æ°ããããã°ã¯ãã¡ãã§ããLINEã¤ãã¼ Tech Blog ããã«ã¡ã¯ãR&Dçµ±æ¬æ¬é¨ã®åç°ã§ãã ååã¨åã åã®è¨äºã§ã¯ãHadoopã®ã«ã¹ã¿ãã¤ãºãã¤ã³ãã解説ãã¾ããã åç´ãªåé¡ã«å¯¾ãã¦ã¯ãmapé¢æ°ã¨reduceé¢æ°ã®çµã¿åããã ãã§ããå¦çãè¡ããã¨ãã§ãã¾ãããããç¨åº¦è¤éãªåé¡ã«å¯¾ãã¦ã¯ãä»ã¾ã§ã«è§£èª¬ããã«ã¹ã¿ãã¤ãºãã¤ã³ãã®æ´»ç¨ãéè¦ã«ãªãã¨ãã話ã§ããã ä»åã¯å®éã®ãµã¼ãã¹ã®äºä¾ãç´¹ä»ããã«ã¹ã¿ãã¤ãºãã¤ã³ããã©ãæ´»ç¨ããã¦ãããç´¹ä»ãããã¨æãã¾ãã ABYSS ABYSSã®äºä¾ãç´¹ä»ãã¾ãããã ABYSSã¨ã¯ãæ¤ç´¢ãµã¼ãã¹ãç°¡åã«æ§ç¯ã§ãã社å ãã©ãããã©ã¼ã ã®ãã¨ã§ã詳ããã¯ä»¥ä¸ã®TechBlogè¨äºã§ç´¹ä»ãã¦ãã¾ããå æ¥ç¡äºã«ç¤¾å ãªãªã¼ã¹ããã¾ããã æ°æ¤ç´¢
This document discusses Hadoop and its use on Amazon Web Services. It describes how Hadoop can be used to process large amounts of data in parallel across clusters of computers. Specifically, it outlines how to run Hadoop jobs on an Elastic Compute Cloud (EC2) cluster configured with Hadoop and store data in Amazon Simple Storage Service (S3). The document also provides examples of using Hadoop St
å æ¥ãHadoop Conferenceã§Scala on Hadoopã¨ããã¿ã¤ãã«ã§çºè¡¨ãã¦ãã¾ãããã¹ã©ã¤ãã以ä¸ã«ç½®ãã¦ããã¾ãã Scala on HadoopView more presentations from Shinji Tanaka. ãã¤ã¸ã§ã¹ãã¨ãã¦ãScalaãHadoopã§åããããã®æ¹æ³ãæ¸ãã¦ããã¾ãã ã¾ããHadoopä¸ã§Scalaãå®è¡ãããããã«ã¯ãJavaã¨Scalaãæ¥ç¶ããã©ã¤ãã©ãªãå¿ è¦ã¨ãªãã¾ããããã§ã¯ãSHadoop( http://code.google.com/p/jweslley/source/browse/#svn/trunk/scala/shadoop )ã使ç¨ãã¾ããSHadoopã¯ãåå¤æãè¡ãã·ã³ãã«ãªã©ã¤ãã©ãªã§ãã ããããWordCountã®ãµã³ãã«ãWordCount.scala (http://blog.jo
Hadoop WebDAV server is based the earlier work and is released under an Apache License, Version 2.0 Notice The WebDAV server is built on the top of Hadoop distribution, so make sure you have sources from hadoop-0.16.* or hadoop-0.17.* unpacked in some location. WebDAV server may be deployed on any node of Hadoop subnet, inside or outside of cluster. It uses some libraries from Hadoop's lib/ dir, s
Hardware Failure Hardware failure is the norm rather than the exception. An HDFS instance may consist of hundreds or thousands of server machines, each storing part of the file systemâs data. The fact that there are a huge number of components and that each component has a non-trivial probability of failure means that some component of HDFS is always non-functional. Therefore, detection of faults
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}