MinHash, b-bit MinHash, HyperLogLog, Odd Sketch, HIP Estimator ã®è§£èª¬ã§ãï¼Read less
2. ( æ ) è¿åç¹æ¢ç´¢ ( Nearest Neighbor Search) ã¨ã¯ ãããããç¹å¾´ç©ºéå ã§ã®é¡ä¼¼ãã¼ã¿æ¢ç´¢ äºç¨®é¡ã®åé¡ãèãããã å®ç¾© â d 空éä¸ã®ç¹éå P ãä¸ããããå ´å æè¿åç¹æ¢ç´¢ ã¯ã¨ãªç¹ q ã«å¯¾ãã pâP ã§ã ||p-q|| ãæå°ã¨ããç¹ p ãæ±ããåé¡ r- è¿åç¹æ¢ç´¢ ã¯ã¨ãªç¹ q ã«å¯¾ãã pâP ã§ã ||p-q||<r ã¨ãªãç¹ p ã ( åå¨ããã®ãªãã° ) åæããåé¡ 3. è¿åç¹æ¢ç´¢åé¡ è¿åç¹æ¢ç´¢ã¢ã«ã´ãªãºã ã¯ã以ä¸ã®ãããªã¿ã¹ã¯ã«ããã¦å©ç¨ããã ã¤ã³ã¹ã¿ã³ã¹ãã¼ã¹å¦ç¿(k-è¿åæ³) ã¯ã©ã¹ã¿ãªã³ã° ãã¼ã¿ã»ã°ã¡ã³ãã¼ã·ã§ã³ ãã¼ã¿ãã¼ã¹æ¤ç´¢ æççµè·¯æ¨æ¢ç´¢(Minimum Spanning Tree) ãã¼ã¿å§ç¸® é¡ä¼¼ãã¼ã¿æ¤ç´¢ 4. è¿åç¹æ¢ç´¢ã¢ã«ã´ãªãºã æãåç´ãªãã®ã¯ãã¯ã¨ãªç¹ q ã¨ã pâP ã®ç¹å ¨
å¤æ¬¡å 尺度æ§ææ³ï¼ãããããããã©ããããã»ããMDSï¼Multi Dimensional Scalingï¼ã¯å¤å¤é解æã®ä¸ææ³ã§ããã主æååæã®æ§ã«åé¡å¯¾è±¡ç©ã®é¢ä¿ãä½æ¬¡å 空éã«ãããç¹ã®å¸ç½®ã§è¡¨ç¾ããææ³ã§ããï¼ä¼¼ããã®ã¯è¿ãã«ãç°ãªã£ããã®ã¯é ãã«é ç½®ããï¼ãå¤å ¸çMDSã¯ä¸»åº§æ¨åæ (Principal Coordinate Analysis; PCoA) ã¨ãå¼ã°ããããã«ä¸»åº§æ¨åæã«ããã¦è·é¢ã«ã¦ã¼ã¯ãªããè·é¢ãç¨ããå ´åã¯ä¸»æååæã¨ç価ã«ãªãã ä¾ - 1973å¹´ã®ã¢ã¡ãªã«50å·ã®äººå£10ä¸äººãããã®æ®ºäººãæ´è¡ãã¬ã¤ãã®ç¯ç½ªæ°ãåã³ãé½å¸äººå£ã®å²å[%]ã®4ã¤ã®è¦ç´ ããä¼¼ãå·ã¯è¿ãã«ç½®ãããã«2次å 空éã«é ç½®ããçµæã
4. ç·LRUDæ°72187 81749 72303 8177850005,6,12=E4D9HIF8=GN576LOABMTPKQSR0J6,5,238=I67E9MBC1AF05HJKRLNGPDQSTO4,6,94827601A3BCD5JGMEFNHLKI6,5,82935=174ABCD=RHTNJKFLI0PQSOGM5,5,13O7D69E0ABC524LGJIFMN8HK6,5,2395OI1AHB4C07KT6SJR8F=M=QEDGL3,3,168452=305,5,1245A9I7JN03HDO6GCKF8BLEM6,4,7154N=D23GMIJ=8L09KFAHBC5,6,B61D5H=42C0398A=IPRJESKMNLQOTF5,6,C35AF184=D=627JGN0SEQLI=HMRTPK5,5,7143506F9NC28JABIMDKGLOEH6,3,
ããã«é åï¼ Double-Array ï¼ã¯ï¼ ãã©ã¤ï¼ Trie ï¼ã®ãã¼ã¿æ§é ã®ä¸ç¨®ã§ããï¼ å°ããè¾æ¸ã§é«éã«æ¤ç´¢ã§ããã¨ããç¹é·ãæã£ã¦ãã¾ãï¼ å®éã«ï¼è¶çï¼ ChaSen ï¼ã åå¸èªï¼ MeCab ï¼ãªã©ã® å½¢æ ç´ è§£æå¨ã§å©ç¨ããã¦ããã¨ããå®ç¸¾ãããã¾ãï¼ ããã«é åã§ã¯ï¼é åã使ã£ã¦ãã©ã¤ã表ç¾ãã¾ãï¼ é åã®åè¦ç´ ã BASE, CHECK ã¨ããäºã¤ã®æ´æ°ãæã¤ã®ã§ï¼é æåãã¨ã£ã¦é å BC ã¨å¼ã¶ãã¨ã«ãã¾ãï¼ ä»¥éã®èª¬æã§ã¯ï¼é å BC ã®è¦ç´ x ã® BASE, CHECK ã ãããã BC[x].BASE, BC[x].CHECK ã¨è¨è¿°ãã¾ãï¼ é常ï¼BASE, CHECK ã¯åå¥ã®é åã¨ãã¦ç´¹ä»ããã¾ããï¼ ç¹ã«åå²ãã¦èããå¿ è¦ããªãã®ã§ï¼ãã®ãããªèª¬æã«ãã¾ããï¼ åºæ¬çã«ï¼é å BC ã®åè¦ç´ 㯠ãã©ã¤ã®ç¯ã¨ä¸å¯¾ä¸ã§å¯¾å¿ãã¾ãï¼ ãã®ããï¼å¯¾å¿ãã
çµ±è¨çæ©æ¢°å¦ç¿å ¥é(under construction) æ©æ¢°å¦ç¿ã®æ´å²ppt pdf æ´å²ä»¥å 人工ç¥è½ã®æ代 å®ç¨åã®æ代 å°å ¥ppt pdf æ å ±ã®å¤æéç¨ã®ã¢ãã«å ãã¤ãºçµ±è¨ã®æ義 èå¥ã¢ãã«ã¨çæã¢ã㫠次å ã®åªã æ失é¢æ°, bias, variance, noise ãã¼ã¿ã®æ§è³ª æ°å¦ã®ããããppt pdf ç·å½¢ä»£æ°å¦ã§å½¹ç«ã¤å ¬å¼ 確çåå¸ æ å ±çè«ã®è«¸æ¦å¿µ (KL-divergenceãªã©) ç·å½¢å帰ã¨èå¥ppt pdf ç·å½¢å帰 æ£è¦æ¹ç¨å¼ æ£è¦åé ã®å°å ¥ ç·å½¢èå¥ ãã¼ã»ãããã³ ã«ã¼ãã«æ³ppt pdf ç·å½¢èå¥ã®ä¸è¬å ã«ã¼ãã«ã®æ§ç¯æ³ æ大ãã¼ã¸ã³åé¡å¨ ã½ãããã¼ã¸ã³ã®åé¡å¨ SVMã«ããå帰ã¢ãã« SVMå®è£ ä¸ã®å·¥å¤« ã¯ã©ã¹ã¿ãªã³ã°ppt pdf è·é¢ã®å®ç¾© é層åã¯ã©ã¹ã¿ãªã³ã° K-means ã¢ãã«æ¨å®ppt pdf æ½å¨å¤æ°ã®ããã¢ãã« EMã¢ã«
å æ¥@niamããã¨@tsubosakaããã®ã¤ã¶ãããè¦ã¦ã¦ï¼ç¢ºç{pi}ã§å¾©å æ½åºããWalker's alias methodã¨ãããã®ãç¥ãã¾ããï¼ãã¾ãã¾ï¼ä»æ¥ï¼å¾©å æ½åºããç¨äºããã£ãã®ã§ï¼æãåºãã¦èª¿ã¹ã次第ï¼ç§ãæåããã¨ããããã¨ãã¦ï¼O(log n)ã§ãããããã¾ããããã¨æã£ã¦ããã®ã§ããï¼ãã®ã¢ã«ã´ãªãºã ã ã¨O(1)ã§ããã¾ãï¼ è§£èª¬ã¯ãã®ãããã®ããã°ãåç §ï¼ æ¯è¼çé«éãªå¾©å æ½åºã¢ã«ã´ãªãºã é«éã«é復å æ½åºãããã¢ã«ã´ãªãºã ã¯ãªãã ãããï¼(2)ãã¦ï¼ç§ã¯ç解åã足ããªãã¦ãã®ãããã®èª¬æãèªãã§ããªãã§ããã§ããã®ããã£ã±ãããããªãã£ãã®ã§ï¼çµµã«æãã¦ç解ãã¾ããï¼ç¢ºç{pi}ã§å¾©å æ½åºããããã«ã¯ï¼piã«æ¯ä¾ããé¢ç©ã®å³å½¢ãå£ã«è²¼ã£ã¦ãã¼ããããã°ããã®ã§ãï¼{0.1, 0.05, 0.3, 0.1, 0.45}ã ã£ãã¨ãã¾ãï¼ããã¨ãããªã®ï¼ ã¾ããæ¯å
ãã¤ã¦ã®Mac OS9ã¾ã§ã®æç»ã¨ã³ã¸ã³ã®ä¸»å½¹ã¯QuickDrawãæ ã£ã¦ãããGUIãªOSã§ã¯ãæåãå«ãã¦ãã¹ã¦ãã°ã©ãã£ãã¯ã¨ãã¦æ±ãã®ã§ãç»é¢ã«è¦ãã¦ãããã¹ã¦ã®ãã®*1ã¯QuickDrawã«ãã£ã¦æããã¦ãããã¨ã«ãªããæç»ã¨ã³ã¸ã³ã¯ãGUIãªOSéçºã®è¦ã¨ãªãæè¡ã§ããããã®åºæ¥ããGUIãªOSéçºã®æå¦ãåããã¨ãè¨ããã ããã¦ãæåæã®QuickDrawã¯ããã«ã»ã¢ããã³ã½ã³ããã£ãä¸äººã§éçºããããã§ããã å½æï¼25年以ä¸åï¼ã®CPUã¯ãåä½ã¯ããã¯ã8MHzã¨ããæ§è½ã ã£ããï¼ç¾å¨ã¯2GHz=2000MHzãã¤ãè¤æ°ã³ã¢ãå½ããåï¼ ãã®ãããªæ§è½ã§ãã£ã¦ããéåæãªããã¦ã¹ã§æä½ã§ããOSç°å¢ã«ããããã«ãæ¬æ°ãªçºæ³ã試è¡é¯èª¤ãéããç¸å½ãªåªåã®æ«ã«éçºãããã®ãLisaãMacintoshã§ãã£ãã Amazon.co.jpï¼ ã¬ããªã¥ã¼ã·ã§ã³ã»ã¤ã³ã»ã¶ã»ãã¬ã¼
Lispå±ã«ã¯éåæãå ¨ããªã, å ¥ãåã®ãã£ãã®è©±é¡ã . TAOCPã«ãã£ãã®è¶³è·¡(parenthesis trace)ã¨ãã話ããã. (-sesã¨è¤æ°ã§ã¯ãªã, -sisã¨åæ°ãªã®ã¯ãªãã.) ä¾ãã°, å·¦ãã£ã4å, å³ãã£ã4åã§, æ£å½ãªãã£ãã®çµã¿åããä½ãã¨, ()()()(), ()()(()), ..., (((())))ã®14éããåºæ¥ã. n=4ã§14éãã«ãªãã¨ããã®ã¯, 2009å¹´8æã®ããã°, ãæ票æ°ãã«æ¸ããéã. 8C4-8C3=70-56=14ã . ãã¦, ãã£ãã®è¶³è·¡ã¯å·¦ãã£ãã0, å³ãã£ãã1ã§è¡¨ããäºé²æ°ã§ãã. å¾ã£ã¦, ()()()()ã¯01010101, (((())))ã¯00001111ã¨ãªã. ãã®æ¹æ³ã§è¾æ¸å¼é ã§æ¸ã㨠è²ã®ç·ã§å²ã£ãã®ã¯, åããã¿ã¼ã³ãè¦ããã¨ããã . ãã£ãæ§é ãä¿ã£ãã¾ã¾, è¾æ¸å¼é ã§æ¬¡ã®æ§é ã«ç§»ãã«ã¯ã©ãã
ãã¡ã®ãã¼ã ã®ã©ã¤ãã©ãªãå ¬éãã¦ããã¾ã ååãã¿ãªã®ã§ããããªã®ãã¤ä½¿ããã ã¼ã¨ããããã¤ã¯ãã°ã£ã¦ããããããªãã§ã http://up.chokudai.net/src/chota1219.pdf.html ã±ããã¼ã©ã¯ã¦ã㨠追è¨: äºåã®å ±éé¨åé¢ç©ãã°ã£ã¦ãã®ã§ä½¿ã£ã¡ããã¡ã§ã(誤差æ»ãã)
13:54 09/12/31 å¹´æ«ã¾ã¨ã ä»å¹´ä½ããã£ããã¨ãèªãã ãã®ãæ¯ãè¿ããã¨æãã¾ãã æä¾ã®ã²ã¼ã å ±åããè¡ãã¨ã ä¸æ© 㨠深é HA ã¯ãªã¢ãã¾ããï¼ ãã®å¾ä»ã®ãã³ã¸ã§ã³ã«ã¯æ½ã£ã¦ãªããã©ãä½ãã¾ãããããå§ãããããªâ¦ã ï¼ ããã°ã©ãã³ã°é¢ä¿ã¯ãããã«ã½ã³çãªãã®ã§ ä½åã å°ãã¿ ãä»ä¸ããã ãã§ã ã¡ããã¨ãããã®ã¯ä½ã£ã¦ãªãã§ãããå°ã£ãå°ã£ãâ¦ã ã©ã£ã¡ãã¨ããã¨ãåå¼·ä¼çãªã¤ãã³ãã§çºè¡¨ãããã¿ãèããæ¹ãå¤ãã£ãã ç¹ã«FLTV ã§ã® "çã»èªç¶è¨èªããã°ã©ãã³ã°" ã®çºè¡¨å 容ã¯å²ã¨å人çã«ä¼å¿ã®åºæ¥ãªã®ã§ãããå¤ãã®æ¹ã«å¥½è©ããã ããã®ã§å¬ããã§ãã ãªãã ãããããã°ããã®éã¯ãç§ã¯ãããããã£ã©ã¨ãããã¨ã§ããã®ã§ã¯ãªããã¨æãå§ãã¦ãã¾ããã ãã®ãä½ããã¨ã«å ¨åãããã¦ãã人ã¯å¤ãããã©ã ãä¸è¦é£ããè¦ãããã¨ãããã«ç°¡åã«åã¿ç ãã¦è¦ããããã
å æ¥ã®ã½ã¼ã·ã£ã«ããã¯ãã¼ã¯ç 究ä¼ã§ã¯ id:kanbayashi ããã«ããçºè¡¨ãããã¾ãããid:kanbayashi ãã㯠Kikker ã ã¯ã¦ãã¾ããã®ã²ã¨ ãªã©ã®éçºãããã¦ããæ¹ã§ããæè¿æ å ±æ¤ç´¢çè«ã«å ¥éããèªåã«ã¨ã£ã¦ã¯ãé常ã«é¢ç½ãçºè¡¨ã§ããã çºè¡¨ã®ä¸ã§ Kikker ã®å¦ç¿ã®ä»çµã¿ã«ã¤ãã¦ã®è§£èª¬ãããã¾ãããKikker 㯠Cosine similarity ã§æ¨è¦ããããã¥ã¡ã³ããæ¤ç´¢ãã¦ããããã§ãããã¦ã¼ã¶ã¼ã®ã¯ãªãã¯ãã¼ã¿ã使ã£ã¦ãã¦ã¼ã¶ã¼ãã¨ã«æ¨è¦å¯¾è±¡ãæé©åããããã«ãã¦ããããã§ãããã®å¦ç¿ã¯ãã¦ã¼ã¶ã¼ãè¦ããã¼ã¸ã®ãã¯ãã«ãããã®ã¦ã¼ã¶ã¼ã®è¶£åãã¯ãã«ã«è¶³ãè¾¼ããã¨ã§å®ç¾ãã¦ãããã¨ã®ãã¨ã§ããã SBMç 究ä¼ã§çºè¡¨ãã"ç§ããã£ã¬ã³ã¸ããSBMãã¼ã¿ãã¤ãã³ã°"ã®ã¹ã©ã¤ã - Ryoã®éçºæ¥è¨ Neo! çºè¡¨ã§ã¯ãã¯ãã«ãå ç®ãããã¨ã«ã¤ãã¦ã
Introduction to Information Retrieval 輪èªä¼ 9ç« ã®å¾©ç¿è³æã以ä¸ã«ã¢ãããã¼ããã¾ããã http://bloghackers.net/~naoya/iir/ppt/iir_09.ppt 9ç« ã¯ãæ¤ç´¢çµæã®é©åæ§ãæ¹åããããããã®äºã¤ã®ã¢ããã¼ããRelevance Feedback (RF) ã¨ã¯ã¨ãªæ¡å¼µã«ã¤ãã¦ã®è©±ã§ãã æ¤ç´¢çµæã®ããã¥ã¡ã³ãã«å¯¾ãã¦ã¦ã¼ã¶ã¼ãã追å ã®å ¥å (Relevant ã Non-relevant ã) ãåãåãã®ã RF ã§ããåãåã£ããã£ã¼ãããã¯ã¯ããã¯ãã«ç©ºéã§ãã¯ãã«ã®éå¿ã使ã£ã¦ã¯ã¨ãªãã¯ãã«ãæé©åãããã¨ã«å©ç¨ã§ãã¾ããæé©åã®ã¢ã«ã´ãªãºã ã¨ã㦠Rocchio ã¢ã«ã´ãªãºã ãå©ç¨ãã¾ãããã ããç¹ã« Web æ¤ç´¢ãªã©ã«ããã¦ã¯ãã¦ã¼ã¶ã¼ã¯æ示çãªãã£ã¼ãããã¯ã好ã¿ã¾ãããããã§ãã¦ã¼ã¶ã¼ããã®å ¥
ã©ã ãè¨ç®ã¯ãè¨ç®ã¢ãã«ã¨ãã¦ã ãã§ãªããæè¨ç®ã®å®éçæ段ã¨ãã¦ãå½¹ç«ã¡ã¾ããããããé常使ãããå種å¤æï¼ã¢ã«ãã¡ããã¼ã¿ãã¤ã¼ã¿ããã«ã¿ï¼ã§ã¯ãã¾ãè¨ç®ãé²ã¾ãªãã¨ããããã¾ããä¾ãã°ãgãfã®éé¢æ°ã®ã¨ããf(g(y)) 㯠y ã«ç°¡ç´ãããã®ã ãã©ãf(g(y)) â y ã£ã¦ç°¡ç´è¦åã¯é常ã®ã©ã ãè¨ç®ã§ã¯ãã¾ãå®å¼åã§ãã¾ããï¼ãããã§ããããããã¾ããããåã«ã¯ãã¾ãæ¹æ³ãæãã¤ãã¾ããï¼ã ããã§ãã©ã ãè¨ç®ã«å ãã¦ã¤ãã·ãã³è¨ç®ã使ãã¨ããããã§ããã§ããã¤ãã·ãã³è¨ç®ã¯ãã©ã ãè¨ç®ã»ã©ã«ããã¥ã©ã¼ã§ã¯ãªãã§ãããç°¡åãªä¾ã§ã¤ãã·ãã³è¨ç®ãç´¹ä»ãã¾ãããã å å®¹ï¼ ã¤ãã·ãã³è¨å·ã¨ã¤ãã·ãã³é ã¤ãã·ãã³é ã®æå³ ã¤ãã·ãã³é ãå®ç¾©ããé¢æ° ä¾é¡ï¼gãfã®æé¢ï¼ã»ã¯ã·ã§ã³ï¼ã§ããã㨠ã¤ãã·ãã³è¨å·ã¨ã¤ãã·ãã³é è² ã®æ°-1ã¨ããç¡çæ°â2ã¨ããå°å ¥ããã¨ãã次ã®ãããªå®
âã¢ã«ã´ãªãºã âã¯ããã£ã¨ãé人éçãªãã®ã®ä»£è¡¨ã ã¨ãããããã½ã¼ã·ã£ã«ã¡ãã£ã¢ã«ã¨ã£ã¦ããã®ã¢ã«ã´ãªãºã ãä¸å¯æ¬ ã ã¨ããã®ã¯ãå®ã«ç®èããã¦ããã åã¯ãã®éãã°ã¼ã°ã«ãã©ããã£ã¦ã¦ã¼ã¶ã¼ãã¼ã¿ãéãã¦ãããã«ã¤ãã¦æ¸ããè¨äºãæ²è¼ããï¼åç·¨ãå¾ç·¨ï¼ãä»åã¯ãèåãªã½ã¼ã·ã£ã«ã¡ãã£ã¢ãµã¤ãããã¦ã¼ã¶ã¼ãã¼ã¿ãæ´»ç¨ããä¸ã§ã©ã®ããã«ã¢ã«ã´ãªãºã ãç¨ãã¦ããã®ããç½æ¥ã®ä¸ã«ããããã ã½ã¼ã·ã£ã«ã¡ãã£ã¢ãæãç«ããã¦ããã®ã¯äººéã®åã ããã¦ã¼ã¶ã¼ãå ¥åãããã¼ã¿ãå©ç¨ã§ããç¶æ ã«ããä»çµã¿ã¯ãã¢ã«ã´ãªãºã ã«ãã£ã¦ä½ããã¦ãããç¾å¨æ´»åãã¦ããç¡æ°ã®ã½ã¼ã·ã£ã«ã¡ãã£ã¢ãµã¤ãã§å®è¨¼æ¸ã¿ã®ãã¨ã ããã¦ã¼ã¶ã¼ã®é¢ä¸ã¨ã¢ã«ã´ãªãºã ã«ããå¦çã«ã¼ã«ã®ä¸æããã©ã³ã¹ãè¦åºããã¨ã¯ãã¨ã¦ãé£ãããªããã¡ã ãããããç´¹ä»ããã¢ã«ã´ãªãºã ã¯ãæªæã®ãªãã¦ã¼ã¶ã¼ã¨çµã³ã¤ãã¦åãã¦ãã¾ããããã®ã ã 人æ°ã½ã¼ã·ã£ã«
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}