æ©æ¢°å¦ç¿ã»ãã¼ã¿ãã¤ãã³ã°å ¨è¬ å¤ããããæ©æ¢°å¦ç¿ã¨å¤ãããªãæ©æ¢°å¦ç¿ [ç©çå¦ä¼èª 2019]ï¼æ©æ¢°å¦ç¿ã»ãã¼ã¿ãã¤ãã³ã°ã«ã¤ãã¦ã®å°é家以å¤ã«åãã解説è¨äº æ©æ¢°å¦ç¿ã»ããã¼ã¿ãã¤ãã³ã¯ãåéã®æ¦è¦ï¼åéå ¨ä½ã®æ¦è¦ã¨å½éä¼è°ååã¾ã¨ãè³æ ML, DM, and AI Conference Mapï¼äººå·¥ç¥è½ï¼æ©æ¢°å¦ç¿ï¼ããã³ãã¼ã¿ãã¤ãã³ã°é¢ä¿ã®å½éä¼è°é¢é£ããã ãã¼ã¿ãã¤ãã³ã°ï¼4種é¡ã®ä¸»è¦åæã¿ã¹ã¯ã¨ãã¼ã¿ãã¤ãã³ã°ã«ããç¥èçºè¦ããã»ã¹ã«ã¤ãã¦ã®å¦é¨ååã¬ãã«ã®èª¬æè³æ 社ä¼ã«ãããæ©æ¢°å¦ç¿ Fairness-Aware Machine Learning and Data Mining: Tutorial on data analysis considering potential issues of fairness ç§ã®ããã¯ãã¼ã¯ã人工ç¥è½ã¨å ¬å¹³æ§ã [人工ç¥è½å¦ä¼ 20
{{#tags}}- {{label}}
{{/tags}}