2020-10-01ãã1ã¶æéã®è¨äºä¸è¦§
ãä»äº argparseã¯Help対å¿ã®ãã¼ãµã¼/validator. argument list + grouping + default value + type cast + validation + help/print ããã£ãããããä»äº. 使ãæ¹ ArgumentParserã¤ã³ã¹ã¿ã³ã¹ãçæãadd_argumentã§argumentsãè¨å®. .parse_xxã§å¼æ°ããâ¦
Checkpoint åæ: Checkpointã®IOã¯ç¡è¦ã§ããã»ã©å°ããï¼çéã§Checkpointãread/writeãããã¤ã¯ããªãï¼ å¦ç¿éå§æã« pull checkpoint, å¦ç¿çµäº/ä¸ææã« push checkpointãå¿ è¦. æ½è±¡åãããªãå ´åãremote->local checkpointãã¦ã¦ã³ãã¼ããcheckpâ¦
ç»å ´äººç©ã¯5人. GPU Kernel Mode Driver (nvidia.ko) CUDA User Mode Driver ("CUDA driver", libcuda.so) Docker CUDA Toolkit and Runtime ("CUDA Toolkit") cuDNN CUDA driver / CUDA Toolkit / cuDNNã«æ°ã使ãäºãå¤ããé ç½®å ´æã¯ä»¥ä¸ã®éã ref. Hostâ¦
å®ãã¯ã©ã¦ããµã¼ãã¹ã使ã£ã¦æ¥½ã æ©æ¢°å¦ç¿! ã¾ã¨ã æ©æ¢°å¦ç¿ã¸ã§ããåæ¢æãæ ¼å®ã¤ã³ã¹ã¿ã³ã¹ã§åãããã¤ã使ãã @2020-11-17 service scheduling auto-scaling auto-retry preemptible e.g. AWS Batch â â â â AWS SageMaker â â â â¡ GCP AI Platform ââ¦
å®ã¯ãããã©ããã ããã ã£ããããã Gãå ã«Backwardããã¨Dã®.gradã貯ã¾ã => "Då ã«å¦ç¿" or "Gã®å¦ç¿æã¯D.requires_grad = false" or "Då¦ç¿åã«NetD.zero_grad()" Då¦ç¿æã«G(z)ã渡ãã¨Gã«ã¾ã§Backpropãã¦ç¡é§ & Gã®.gradã貯ã¾ã => "D(G(z).detâ¦
Cost/Performance of GPU for Mixed Precision Training GPU GCP price [\$/h] (vs T4) perf [TOPS] (vs T4) NVIDIA A100 0.--- (x-.-) 312.0 (x4.80) NVIDIA V100 0.740 (x6.7) 125.0 (x1.92) NVIDIA T4 0.110 (----) 65.0 (-----) NVIDIA P100 0.430 (x3.9â¦
iterable iterable1ã¯èªèº«ã®ã¡ã³ãã¼ã1度ã«1ã¤è¿ããããªãã¸ã§ã¯ãã§ãã2ãå ·ä½ä¾ã¯list, str, tuple, dict, file obj, iterãå®è£ ããclassãªã©ãªã©ã build-iné¢æ°ã®iter()ã«æ¸¡ãã¨iteratorãè¿ãã iter()é¢æ°ç¸å½ã®æä½ãæ§ã ãªè¨èªæ©è½ãæ示çã«ãµâ¦
æå°æ build instruction (setup.py or pyproject.toml) ãããGitHubã¬ãã¸ããªã«å¯¾ã㦠pip install git+https://github.com/bkvogel/griffin_lim 以ä¸ã pipã¨ãã¼ã¸ã§ã³ç®¡çã·ã¹ãã pipã¯ãã¼ã¸ã§ã³ç®¡çã·ã¹ãã /VCSããã®installã«å¯¾å¿ãã¦ãã. 対å¿â¦
wheelã¨ã¯ããã«ãæ¸ã¿ããã±ã¼ã¸ã®ã¤ã³ã¿ã¼ãã§ã¹/ãã©ã¼ãããã§ããã Specification PEP 427 -- The Wheel Binary Package Format 1.0 This PEP describes a built-package format for Python called "wheel". èæ¯ ã©ã¤ãã©ãªã®å°å ¥ã«ã¯buildã¨installaâ¦
æ©æ¢°å¦ç¿ã»ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ããã¦ããã¼ã¿ãç¨æã»ãã¼ããããã¨ã¯ç°¡åããã«è¦ãã¦é£ããã corpusã®ãã¦ã³ãã¼ãã»å±é ãã¼ã¿ã®åå¦çã»ä¿å ãã¼ã¿ã»ããï¼processed corpusã®é¨åéåï¼ã®ã»ããã¢ãã datumã®ãã¼ã ã¢ã¯ã»ã¹é ã»ãããå åâ¦
datamodule LightningDataModuleã¯PyTorch Datasetã®è»½ãWrapper. Train/Eval/Testã®åå²ãDataset preparation & runtime setupãªã©ãå æ¬. moduleããã£ã¦ãããä»äºã¯ã»ã¨ãã©ç¡ãã¦ãã©ããåæ£ç°å¢ã ã¨ãããã¨ãããã¿ãã. newãã¦trainerã«ã¼ãã£ã¨â¦
AWS Wavelength: 5Gã®æ§å ã¯ã©ã¦ããµã¼ãã¹ï¼ã£ã½ãï¼ localzones: AZå ã«DCã®ç©çé ç½®ãç°ãªããµãzoneãæ°è¨ããã®åé¡åãlocalzones USã ã¨AZã空éçã«ãã£ã¡ãåºãã®ã§é½å¸è¿éã®localzonesã«ã¤ãªããããªãã sub10msecãlocalzonesã®æå³ã¿ããã ãâ¦