解ç´çãä¸å®ã§ããã¨ä»®å®ããã¨ã解ç´çã®éæ°ã§ã¦ã¼ã¶ã¼ã®å¹³åç¶ç¶æéãæ±ãããã¨ãã§ãã¾ã
以ä¸ã®è¨äºãããºã£ã¦ããå¾ã«ã解ç´çããã¦ã¼ã¶ã¼ã®å¹³åç¶ç¶æéãè¨ç®ããã®ã試ãã¦ããã®ãè¦ããã¾ãã
ã¨ãããå
¨ä½ã®è§£ç´çã§è¨ç®ããå¤ã¨ãã¦ã¼ã¶ã¼ãå±æ§å¥ã«åãã¦åºãã解ç´çãå
ã«è¨ç®ããå¤ã«çµæ§å·®ããã£ã¦ä¸æè°ãããªæ§åã§ãã
migi.hatenablog.com
ä¾
ã©ããªæãã«ãªãã®ãä¾ãåºãã¦ã¿ã¾ã
ã¦ã¼ã¶ã¼ã\(10\)人ãã¦ãæéã®è§£ç´çã\(p=\frac{3}{4}\)ã§ããã¨ãã¾ã
ãããã®ã¦ã¼ã¶ã¼ã®å¹³åç¶ç¶æéã¯è§£ç´çã®éæ°ã§ãããã\(E=\frac{1}{p}=\frac{4}{3}\)ã¶æã«ãªãã¾ããç¶ç¶æéã人æ°åããã¨\(\frac{40}{3}\)ã¶æã§ã
å®ã¯ãã®\(10\)人ã®ã¦ã¼ã¶ã¼ã¯è§£ç´çã\(p_A=\frac{1}{2}\)ã®ã¦ã¼ã¶ã¼ã\(5\)人(ã°ã«ã¼ãA)ã解ç´çã\(p_B=1\)ã®ã¦ã¼ã¶ã¼ã\(5\)人(ã°ã«ã¼ãB)ã ã£ãã¨èãã¾ãããã®å ´åã§ãå
¨ä½ã®å¹³å解ç´çã¯å
ã¨åã\(p=\frac{5 \times p_A + 5 \times p_B}{10}=\frac{3}{4}\)ã§ã
ã°ã«ã¼ãAã®å¹³åç¶ç¶æéã¯\(E_A=\frac{1}{p_A}=2\)ã¶æã«ãªãã¾ããç¶ç¶æéã人æ°åããã¨\(10\)ã¶æã§ã
ã°ã«ã¼ãBã®å¹³åç¶ç¶æéã¯\(1\)ã¶æã«ãªãã¾ããç¶ç¶æéã人æ°åããã¨\(5\)ã¶æã§ã
ã°ã«ã¼ãAã¨Bã®ç¶ç¶æéã®äººæ°åãåè¨ããã¨\(15\)ã¶æã«ãªãã¾ã
ããã«å¯¾ãã¦å
¨ä½ã®ç¶ç¶æéã®äººæ°åã¯\(\frac{40}{3}\)ã¶æã«ãªã£ã¦ãã¾ããã°ã«ã¼ãAã¨Bã®åè¨ãããå°ãªããªã£ã¦ãã¾ãã¾ãã
åè¨ãåããªããªãçç±
å¹³åç¶ç¶æéã®è¨ç®ã§ã¯è§£ç´çãä¸å®ã§ãããã¨ãä»®å®ãã¦ãã¾ã
ã¤ã¾ãå
¨ä½ã§è¨ç®ããã¨ãã«ã¯å
¨ä½ã®è§£ç´çãä¸å®ã¨ãã¦è¨ç®ãã¦ãã¾ã
ã¨ãããã°ã«ã¼ãããããã§å¹³åç¶ç¶æéãè¨ç®ããã¨ãã«ã¯ããããã®ã°ã«ã¼ãã«ã¤ãã¦è§£ç´çãä¸å®ã¨ãã¦è¨ç®ãããã¨ã«ãªãã¾ã
ããããã®ã°ã«ã¼ãã®è§£ç´çãä¸å®ã¨ããã¨ã解ç´çã®é«ãã°ã«ã¼ãã®äººæ°ã¯ä½ãã°ã«ã¼ãã«æ¯ã¹ã¦éãæ¸ã£ã¦ããã®ã§ãè¤æ°ã®ã°ã«ã¼ããæ··ããã¨ãã«ã¯å
¨ä½ã®è§£ç´çã¯ã©ãã©ãä¸ãã£ã¦ãããå
¨ä½ã®è§£ç´çãä¸å®ã¨ããä»®å®ãæãç«ããªãã¾ã
ã¤ã¾ãå
¨ä½ã®è§£ç´çãä¸å®ã§ã¯ãªããªãã®ã§ãå
¨ä½ã®è§£ç´çã®éæ°ã«ããå¹³åç¶ç¶æéã®è¨ç®ã¨ã¯åããªããªãã¾ã
ã¾ãæ°å¼çã«ã¿ãã¨ãã°ã«ã¼ãAãBã®æå¾
å¤ããããã\(E_A=\frac{1}{p_A}\)ã\(E_B=\frac{1}{p_B}\)ãªã®ã«å¯¾ãã¦å
¨ä½ã®è§£ç´çã§åºããå¹³åç¶ç¶æéã¯ä»¥ä¸ã®ããã«ãªãã¾ã
$$E=\frac{1}{p}=\frac{10}{5 \times p_A + 5 \times p_B}=\frac{10}{5 \times \frac{1}{E_A} + 5 \times \frac{1}{E_B}}=\frac{2E_A E_B}{E_A + E_B}$$
\(E\)ã¯\(E_A, E_B\)ãå®æ°åãããã®ã足ãåããã¦ã表ç¾ã§ããªããã¨ã¯æããã§ã
ã¡ãªã¿ã«\(E=\frac{10}{5 \times \frac{1}{E_A} + 5 \times \frac{1}{E_B}}\)ã®å¼ã¯èª¿åå¹³åã®å½¢$$\frac{n}{\sum^n_i \frac{1}{x_i}}$$ã«ãªã£ã¦ãã¾ã
調åå¹³åã¯ãå¹³åãããããããã®å¤ãçãããªãã¨ãã«ã¯ç¸å å¹³å\(\frac{E_A+E_B}{2}\)ããå°ããªå¤ã«ãªããã¨ãç¥ããã¦ããã®ã§ããã®ãã¨ãããå ¨ä½ã®å¹³åç¶ç¶æéãããããã®ã°ã«ã¼ãã§è¨ç®ããå¤ãããå°ãããªããã¨ãè¨ãã¾ã
ã¾ã¨ã
å ¨ä½ã§è§£ç´çãæ±ãã¦å¹³åç¶ç¶æéãæ±ãããã®ã®äººæ°åã¨ãã°ã«ã¼ãå¥ã«åãã¦è§£ç´çãæ±ãã¦å¹³åç¶ç¶æéãæ±ãããã®ã®äººæ°åã®åè¨ã¯åããªã
ãã¾ã
å
ã®è¨äºã§ã¯è§£ç´çã\(p\)ã®ã¨ãã«å¹³åç¶ç¶æé(ç¶ç¶æéã®æå¾
å¤)ã\(\frac{1}{p}\)ã«ãªãã®ãå¹¾ä½ç´æ°ã使ã£ã¦è¨¼æãã¦ãã¾ããããæåã®1åç®ã®è©¦è¡ã«ã¤ãã¦èãã¦æå¾
å¤ã®æ¹ç¨å¼ãæ¸ãã¨ç°¡åã«è§£ãã¾ã
æå¾
å¤ã¯è§£ç´ããªãã¨ãããªãã¡ç¢ºçã\(1 - p\)ã®ã¨ã\(1\)å¢ãã¦\(E + 1\)ã¨ãªãã¾ã
解ç´ããã¨ãã«ã¯ããªãã¡ç¢ºç\(p\)ã§ãããã®ã§æå¾
å¤ã¯\(1\)ã§ã
ãããå¼ã«ããã¨ä»¥ä¸ã®ããã«ãªãã¾ã
$$E=(1 - p)(E + 1)+p \times 1$$
æ¹ç¨å¼ã解ãã¨ãæå¾
å¤ã¯è§£ç´çã®éæ°ã«ãªãã¾ã
$$E = \frac{1}{p}$$