ææ°å¹³æ»ç§»åå¹³åã¯ç§»åå¹³åã®ä¸ç¨®ã§ãæ°åã®ããå¤ã«å¯¾å¿ãã移åå¹³åå¤ãã次ã®ãããªæ¼¸åå¼ã§å®ããã
ããã§ã¯æ°ããå¤ã«å¯¾ããéã¿ã®å²åã調æ´ããä¿æ°ã§ãã§ããã1ã«è¿ãã»ã©ç´è¿ã®å¤ã®å½±é¿ã大ãããªãã
漸åå¼ãç´æ°å±éãã¦ã次ã®ãããªè¡¨ç¾ããããã¨ãã§ããã
ã«è¿ãã»ã©éã¿ã大ãããé ãå¤ã®éã¿ãææ°é¢æ°çã«æ¸è¡°ãã¦ãããã¨ãåããã
ææ°å¹³æ»ç§»åå¹³åã¯Exponential Moving Averageã®é æåãã¨ã£ã¦EMAã¨å¼ã°ãããã¨ãå¤ãã®ã§ã以ä¸EMAã¨ããã
åæå¤åé¡
EMAã¯æ¼¸åå¼ã§å®ç¾©ãããã®ã§ç¡éã®æ°åãä»®å®ãã¦ããããç¾å®ã®ãã¼ã¿ã¯æéã§ããã®ã§ãä¾ãã°ä»¥åã®æ°åãå ¥æã§ããªãã¨ãã«ãã©ããããã¨ããåé¡ããããããã«ã¯ããã¤ãã®æ¹æ³ãããã®ã ããããã¤ãã®æ¹æ³ãããã¨ããåæã§è§£èª¬ãããããã¹ãã¯ãã¾ãå¤ããªãã調ã¹ãã®ã«è¦å´ããã
ãæåã®ã§ä»£ç¨ããæ¹æ³
æ¯è¼çåç´ãªæ¹æ³ã¨ãã¦ãã¨ãã¦ãã¾ããã¤ã¾ãå©ç¨å¯è½ãªæãå¤ããã¼ã¿ã®å¤ãEMAã®åæå¤ã¨ãããã®ãããããããã§é©å½ã«æ¤ç´¢ãã¦åºã¦ããEMAã®è§£èª¬è¨äºã§ãããç´¹ä»ããã¦ããã
Rã§ãPythonã§ãEMAãè¨ç®ããæ¨æºã®é¢æ°ã¯ç¡ãã®ã§ä½ããã®ããã±ã¼ã¸ãå©ç¨ãããã¨ã«ãªãã
Rã®å ´åãpracma
ããã±ã¼ã¸ã®movavg()
é¢æ°ãææ°ç§»åå¹³åã«å¯¾å¿ãã¦ãããå®ç¾©ãæç²ããã¨æ¬¡ã®ããã«ãªã£ã¦ãããæåã®çµæãæ°åã®æåã®å¤ã§åæåããã¦ãããã¨ãåããã
# R # pracma::movavg a <- 2/(n + 1) y[1] <- x[1] for (k in 2:nx) y[k] <- a * x[k] + (1 - a) * y[k - 1]
Pythonã®å ´åã¯pandas.DataFrame.ewm
ãå©ç¨ããã®ãä¸è¬çã¨æãããããããã©ã«ãã§ã¯ãã®æ¹æ³ã®è¨ç®ãè¡ããããå¼æ°ã«adjust=False
ãæå®ããå¿
è¦ããããã¤ã¾ãããã©ã«ãã§ã¯ä½ããã®èª¿æ´ãããã¦ããã¨ãããã¨ã ããã©ã®ãããªèª¿æ´ãè¡ããã¦ããã®ãï¼
ãã®åã«ãåä¸ã®ã§ãåæåãããã¨ã®åé¡ã説æããã
ãã®åæåæ¹æ³ã¯å¯ä¸ã¤ã®å¤ãç½®ãæããã ãã®ããã«è¦ããããå®éã®ã¨ããã¯ä»£å ¥ããã¯ãããããå¤ãç¡éã«ç¶ãæ°åãã¹ã¦ã®ãã«ç½®ãæããã®ã¨åããã¨ã«ãªã£ã¦ãããã¯æ¼¸åå¼ã§å®ç¾©ããã¦ããã®ã§ãåæå¤ãé©å½ã«å®ããã¨ãåæå¤ä»¥åã®ç¡éã®æ°åã«å¯¾ãã¦ä½ããã®ä»®å®ãå ¥ã£ã¦ãã¾ãã¨ãããã¨ã§ããã
ä¾ã¨ãã¦ã¨ããå ´åãèããã
ãã®ã¨ããè¨ç®ããã¨æ¬¡ã®ããã«ãªãã
ããã§ãããã¤ã©ã¼å±éããã¨æ¬¡ã®ããã«ãªãã
ããªãã¡ã次ã®ããã«ã«å¯¾ãã¦ç¡éç´æ°ãããã£ã¦ãããã¨ããããã
ããã®ä½ãåé¡ãã¨ããã¨ãåæå¤ã«è¨å®ããã®å½±é¿ããå®éã®ãã¼ã¿æ°ã«æ¯ã¹ã¦ç¸å¯¾çã«å¤§ãããªã£ã¦ãã¾ãã¨ããç¹ã«ããã
ããã§ãã®éã¿ãç¸å¯¾çã«å°ãããã¦ããã¼ã¿æ°ã«è¦åã£ãç¨åº¦ã®å½±é¿åã«æãã¦ããããã¨æããããããªãããã®ãããªèª¿æ´ããã¦ããã®ãpandas.DataFrame.ewm
ã®ããã©ã«ãã®æ¹æ³ã§ããã
æåã®æ¹ãéã¿ä»ãã®æéåºéã®ç§»åå¹³åã¨ã¿ãªã
ã©ã®ãããªèª¿æ´ãããã¦ãããã¯pandas.DataFrame.ewm
ã®ããã¥ã¡ã³ã(pandas.DataFrame.ewm — pandas 1.4.3 documentation)ã確èªããã¨æ¸ãã¦ããã
è¦ããã«ãã®éã¿ã¯1ãã®éã¿ã¯ãã®éã¿ã¯ã¨ãã¦ãéã¿ä»ãã®å¹³åãã¨ã£ãå¤ãã¨ããã¨ãããã¨ã ã
å ã®EMAã®å®ç¾©ã¨æ¯è¼ããã¨ãç´è¿ã®ãã¼ã¿ã®éã¿ãç¸å¯¾çã«å¤§ãããå¤ããã¼ã¿ã®éã¿ãç¸å¯¾çã«å°ãããªã£ã¦ãããã¨ãããããã¾ãããã¼ã¿ãå¢ãã¦ããã°å ã®EMAã®å®ç¾©ã«è¿ã¥ãã¦ããï¼æ¥µéã«ããã¦ã¯åæ¯ãã¨ãªãããï¼ã
Rã®ããã±ã¼ã¸ã§ãã®è¨ç®æ¹æ³ãæ¡ç¨ããEMAãè¨ç®ãã¦ããããã®ã¯ãããããããªããã軽ãæ¢ããç¨åº¦ã§ã¯è¦ã¤ãããªãã£ããè¨ç®æ¹æ³ã¯ããã»ã©é£ãããªãã®ã§ãèªåã§å®ç¾©ãã¦ãããã»ã©è¤éã«ã¯ãªããªããpracma::movavg
ãåèã«èª¿æ´æ©è½ã追å ããä¾ã示ãã
# R my_ewm <- function(x, a = NULL, adjust = TRUE) { nx <- length(x) if(is.null(a)) a = 2 / (nx + 1) y <- numeric(nx) y[1] <- x[1] if(adjust){ a_adj <- 1 w_sum <- x[1] } for (k in 2:nx) { if(adjust) { a_adj <- a_adj + (1 - a)^(k - 1) w_sum <- (x[k] + (1 - a) * w_sum) y[k] <- w_sum / a_adj } else { y[k] <- a * x[k] + (1 - a) * y[k - 1] } } return(y) }
ãã è¤éã§ãªãã¨ãã£ã¦ãé常ã«ã·ã³ãã«ã¨ããã»ã©åç´ã§ããªããå®è£
ãã¹ã®å±éºæ§ãããã®ã§pandasã使ãããªãpandasã使ã£ãã»ããè¯ããpandasãªãdf.ewm(alpha=1/2).mean()
ãªã©ã¨ããã ãã§æ¸ããããªãã·ã§ã³ãå¤ãã
ã¾ããPythonã®ç°å¢ãæ´ã£ã¦ãããªãRããreticulate
ããã±ã¼ã¸ã使ã£ã¦pandasãå©ç¨ãã¦ãè¯ããæ¨æºã®ãã¼ã¿ã»ããã§ããAirPassengers
ãå¹³æ»åããä¾ã示ãã
# R library(reticulate) pd <- import("pandas") pd$DataFrame$ewm(data.frame(AirPassengers), alpha = 0.5)$mean()
ãã®æ¹æ³ã¯ãã¼ã¿ã®æåã®æ¹ã§ã«å¯¾ããã®å½±é¿ã大ãããªãã®ã§ãæ°åã®ä½ç½®ã«ãã£ã¦ã®å¤ã®å½±é¿ã®åº¦åããå¤ãã£ã¦ãã¾ãããã®ãããªèª¿æ´ããã¦ããã®ã ããå½ç¶ã¨ããã°å½ç¶ã ããããã¯å¥½ã¾ããå ´åãããã°å¥½ã¾ãããªãå ´åããããããªæ°ãããã
åæå¤ã«æåã®ããã¤ãã®å¤ã®å¹³åã使ã
EMAã¯ãã¯ãã«ã«åæã®æèã§ãããåºã¦ãããããã®ãããªå ´åã«ãã®å®ç¾©ã使ããã¦ãããã¨ãå¤ãããã«æããä¾ãã°SMBCæ¥è証å¸ã®è§£èª¬ãã¼ã¸(指数平滑移動平均│初めてでもわかりやすい用語集│SMBC日興証券)ã¯ãã®èª¬æã«ãªã£ã¦ããã
æåã®1ã¤ã ããç¡éã®æ°åã¨ä»®å®ãã¦ãã¾ãããã¯å¦¥å½æ§ãããããã«æãããã
ãã®æ¹æ³ããã®ã¾ã¾å®è£ ããRãPythonã®ããã±ã¼ã¸ã¯è¦å½ãããªãã£ããããã¼ã¿ç³»åã®æåã«å¹³åå¤ãçµåãã¦èª¿æ´ãªãã®EMAãæ±ããã°åãçµæã¨ãªãã
æåã®æ¹ã®å¤ãç¡è¦ãã
ãããã調æ´ãå¿ è¦ã«ãªãã®ã¯æ°åã®æåã®æ¹ã«å¯¾å¿ãããè¨ç®ããéã®ã«å¯¾ããéã¿ãé©åã§ã¯ãªãã¨ããã®ãåå ãªã®ã§ãæåã®æ¹ã®ã¯ç¡è¦ãã¦ãã¾ãã¨ããã®ãæã§ãããè±èªçWikipediaã§ã¯è¨ç®ãããç¨åº¦åæããã¾ã§ã®æéãspin-upæéã¨å¼ãã§ãããããã¤ç¡è¦ãã¹ããã®ç®å®ãªã©ã解説ããã¦ãã(Moving average - Wikipedia)ã
pandas.DataFrame.ewm
ã®ãªãã·ã§ã³ã«min_periods
ã¨ãããã®ããããè¨ç®ã«ç¨ãããã¼ã¿ãæå®æ°ã«æºããªãå ´åã¯çµæãnp.nan
ã¨ãããããããããã®ç®çã§å©ç¨ã§ããã
ã¡ãªã¿ã«ãå°ããå ´åãé¤ãã°ãã©ã®ãããªèª¿æ´æ¹æ³ãã¨ã£ãã¨ãã¦ãããç¨åº¦ã®æéè¨ç®ããã°çµæã¯ä¸è´ãã¦ããã®ã§ãå©ç¨ã§ãããã¼ã¿ãååã«ããã°æåã®æ¹ããããµãªåã£ã¦ãã¾ããã®æ¹æ³ãä¸çªå®ç¨çãããããªãããã¡ããããå°ããè¨å®ãããå ´åã«ã¯èª¿æ´æ¹æ³ãéè¦ã«ãªãã¨ãããã¨ã§ã¯ãããã
åè
- å®è·µ æç³»å解æ âçµ±è¨ã¨æ©æ¢°å¦ç¿ã«ããäºæ¸¬
- p.53ãããããææ°å¹³æ»æ³ã®èª¬æããããåæå¤ã®èª¿æ´ã«ã¤ãã¦ã¯æè¦çãªè»½ã説æãããã¦ããã
- 説æã¯æªããªããRã¨Pythonã®ã³ã¼ããã¡ãã£ã¨å¾®å¦ãã¾ããæç« ã«ç´è¨³ã£ã½ãç解ãã¥ããé¨åãã¡ããã¡ããããã
- The correct way to start an Exponential Moving Average (EMA) | David Owen’s blog
- ä¸è¨æ¸ç±ã§åèæç®ã¨ãã¦æãããã¦ããããã°è¨äºãåæå¤ã®èª¿æ´ã«ã¤ãã¦èª¬æãããè²´éãªè¨äºã ãã説æãé©åãã©ããã¯å¾®å¦ãªæ°ãããã
- pandas.DataFrame.ewm — pandas 1.4.3 documentation
- ãã®é¢æ°ã¯è²ã ãªãã¨ãã§ããã®ã§ãããã¥ã¡ã³ããä¸èªãã¦ããã¨ããã
- Moving average - Wikipedia
- æ¥æ¬èªçã®è¨äºã¯è±èªçãåèã«ãã¦ããã¨æãããããè±èªçã®æ¹ã説æãå å®ãã¦ããã
- 【Python】pandasの指数平滑移動平均の値が違った理由 - turtlechanのブログ
- åæå¤ãæåã®æ°é ã®å¹³åå¤ã¨ããå ´åã®å®è£ ä¾ãããã