ãã£ãå¥ã«éåè«ã®åå¼·ãªãã¦ããªãã¦ãã©ãã©ã質åãã¦ãã ãã£ã¦ãããã§ãããä¾ãã°ã¹ã¯ã¼ã«ãã¤ãºã§ä¸çªå¥½ããªã®ã¯ã©ã®ãã£ã©ã§ããã¨ãã
ask.fmã«æ¸ããåçãè¦ãããªããªã£ã¦ããã®ã§ããã¡ãã«ãµã«ãã¼ã¸ãã¦ããã¾ãããã¿ãã¬æ³¨æã
Â
Q. éåè«ãåå¼·ããã質åãã«æ¥ã¾ããã
A.  ãã£ãå¥ã«éåè«ã®åå¼·ãªãã¦ããªãã¦ãã©ãã©ã質åãã¦ãã ãã£ã¦ãããã§ãããä¾ãã°ã¹ã¯ã¼ã«ãã¤ãºã§ä¸çªå¥½ããªã®ã¯ã©ã®ãã£ã©ã§ããã¨ãã
ã以éããã¿ãã¬æ³¨æã
ããããã¯æ¡è¨èã§è²ããªãã§ããããããã¢ãã¡ãã観ã¦ããªããã¨ã¯æã£ã¦ããã¾ãããå¨äºç ãªã®ã§ã§ããã ãä¸»äººå ¬ãæ¨ããã£ã©ã«ããããªãã¨ããæ°æã¡ãã¯ãã£ã¦ãã¾ããã§ããããããªã«ç´ æ´ãããã¤ã³ãã¬ã«è³ãããããªãæ¹ãããããã§ãã
ãããæ¬å½ã¯éä¸ã¾ã§å¹é£ãããããªã¨ãæã£ã¦ããã§ãããè¦ãç®ã¯ã¨ãããç«ã¡ä½ç½®ã¿ãããªã®ããã§ããæ¦ç¥å®¶ã¶ã£ã¦ããå²ã«ã¯ãä¸çã¨èª ããã£ã¤ããä½æ¦ã絶æçã«å ¨ã¦å¤±æãã¦ãããã身ä½ãå·®ãåºãã¦ã¾ã§ä¹å¥³ãåãé¢ããã¨ãã¦ãã§ãçµå±ã¯èª ã®èªå è½ãå éããããã¨ã«ãããªã£ã¦ããªãã£ãæ°ãããã
ãããããããã£ã¦ãªãã¦ããã©ã³ã¹ã«åºçºããã¾ã§ãã£ã¨ä¸çã®ãã¨ãæã£ã¦è¡åãã¦ãããããªã®ã«ãæçµåã§çªç¶(ä¸çã®å¦æ³ã®ä¸ã¨ã¯ãã)ä¸çãå½åè ã¨è²¬ããã¦ãã®ã¯ã©ããããã¨ãªãã§ããããã¡ãã£ã¨ãã®ãããã®å¹é£ã®æ°æã¡ãææ¡ã§ããªãããããçç¾ããææ ãé¯ç¶ãã¦ããã®ã ãããã©ã
ããããããªãã§èª ã¯å¹é£ã追ã£ã¦ç©ºæ¸¯ã¾ã§æ¥ãã®ã ããããããã®æç¹ã§ã¯èª ã¯ãé¢åããããã°ããè¨ã£ã¦ããã®ã«ããã®å½¼ãçªãåãããã®ã¯ãªãã ã£ããã ããããã¼ããã¨ã³ãã£ã³ã°ãã¼ãã¹ããããããããã¨ãã«ãªããè¦éãã¦ãã®ããªãã
ãããã§ãã¨ãããå¹é£ã¯ã©ãã§ãããããå½åè ãããã ã£ãããçµæçã«ãããªã«ã²ã©ãç¶æ³ããæ®ããªãã£ã彼女ã®æ¹ã ããã«ã
ã¨ã«ããè¨èã§ããããã®æ¿ã£ãç®ã§æ©éæ©ã®ä¸ã«ç«ã£ã¦ããã®ãè¦ãæç¹ã§ãã§ã«ããã¯ã¢ã¦ãã§ãããã¨ããã§ããã®ã¨ãã«æã£ã¦ãã大ããªããã°ã®ä¸èº«ã¯ä½ãªãã§ãããï¼
ãã£ã±ãã²ã¼ã ãã£ã¦ãã¾ãã¾ãªå¯è½æ§ãè¦ãªããã¨ã«ã¯ç解ã§ããªããã¨ããããããããªããããç§ã®ç¥ããªãæ¡è¨èããã®ä¸ã«åå¨ãã¦ãããã¨ãæããã
ããã¦ãã©ã³ã³ã®ä¸ã§ç¹ãã£ã¦ããªãæºå¸¯ã«è©±ãç¶ãããå 容ã¯ã¨ããã°ãã¾ã西å寺ãããèªã£ã¦ä¸ç·ã«å±ä¸ã§é£ã¹ã¾ããããããããç´ æ´ããããç´ æ´ããéããããã¿æã£ã¦æ¯ãåããªãã誰ã§ãããã§ãããï¼ãããããªãã¦ããããã£ã¦éãã«çãããã®çæ°ãæããããããªãã§ããã
ããã¦ãå é»ã®åããæºå¸¯ã«ã¯ãªã¹ãã¹ããªã¼ã®ä¸ã§å¾ ã¡ãããã¨è¨ããé ã«éªãç©ããã¾ã§å¾ ã¡ç¶ããããããã¡ããã®ã·ã¼ã³å¥½ãéããã
æã®æ·±ããéãããããã§ãããèª ã®å½¼å¥³ã§ãªãèªåã¨ãããã®ãå ¨ãæ³åã§ããªããã好ããããªããã¨è¨ãããå¾ã«ã§ããï¼ä¸çãå¦å¨ ããã¨èãã¦é¢ãã¦ããä»ã®å¥³ã®åã¨ã¯éããã§ããããããªãã¨ããã奴ãããªãã£ãããããªãã¦è»å¼±ãªãã¨ãããä¹å¥³ã¨ã¯éããã§ããããã¦ãèª ãæãéãã«ãªããªãã£ãããã¨ãã£ã¦æãåºãä¸çã¨ã¯éããã§ãã
ã£ã¦ããããä¸çã¯å¼±ãããã§ãããè¨èã¨æ¯ã¹ãã¨ãè¨èã¯ãèª ã¨ä¸çã®é¢ä¿ãç¥ã£ã¦ããå½¼ãããã©ã¼ã¯ãã³ã¹ãè¸ã£ã¦ãã¹ã¾ã§ãã¦ããã®ãè¦ã¦ããèªåãèª ã®æ人ã§ãããã¨ãçããªãã£ããã§ããããã£ãä¸åã®æµ®æ°ãè¦ãã ãã§å¯è¾¼ãä¸çã¨ã¯æ ¼ãéãã¾ããã
第ä¸ãèª ã殺ãããã¨éããã¨ãæä½ã ããåç©ãæã£ã¦ã¤ã³ãã¬ã¶ã£ãã¨ããã§ããã£ã±ãè¦æã®éãã¯ã§ãããªãå±ä¸ã§ããã°ã®ä¸ã«å ¥ã£ã¦ããé¦ãã¿ã¦åããã
ããã¨æ¯ã¹ã¦ãããã£ã¨äºäººããã§ãããèª ãããã¨è¨ããè¨èã®ææ ã®æ·±ãããããªãã¸ããã¦ãªã£ãå¿ ç¶ã®çµæ«ã§ããªã
ã¨ããããã§ãçããã³ããããµããå´ãã¾ãããã
â¦ãªãã®è©±ã ã£ãã
Â
ask.fmã«æ¥ããå¸nè§å½¢ãä½ããç¹éåã«ã¤ãã¦ã®åé¡ã解ãã
ä¹ ãã¶ãã«ask.fmã®åæ°å¶éã«ã²ã£ããã£ãã®ã§ãããã«ãã§ãã¯ãã¦ãªããã©ããæãããåé¡ã¯
ãå¹³é¢ä¸ã«n>3åã®ç¹ãããã¨ããããããçµãã§å¸nè§å½¢ãä½ããã¨ãã§ããããã®å¿ è¦ååæ¡ä»¶ã¯ã"ãã®nåã®ç¹ããã©ã®ããã«3ã¤ã®ç¹ãé¸ãã§ããã®3ã¤ã®ç¹ãçµãã§ã§ãã3è§å½¢ã®å é¨ï¼å¢çå«ãï¼ã«ä»ã®ç¹ãå ¥ããªããã¨"ã§ãããã証æã¾ãã¯å証ãã¦ãã ããã
æ²ãããªãã«ãæ°å¦è ã«ãã ã§åé¡ã解ãã¨ã¯ãµã¦ããããã ã¨æãã¤ã¤ãéåæãããã®ãéãããããªæ°ãããã®ã§èãã¦ãã¾ã£ãã
ã¾ããå¿ è¦æ¡ä»¶ã§ãããã¨ã¯ç°¡åã§ãä¸è§å½¢ABCã®å é¨ã«Dãããã¨ãã©ããªãµãã«å¸nè§å½¢ãä½ãããA, B, Cãé ç¹ã«ããéãDã¯ãã®å é¨ã«å ¥ã£ã¦ãã¾ãã®ã§å¸nè§å½¢ã®é ç¹ã«ãªããªãã
ã¨ããããã§ååæ¡ä»¶ã«ãªããã¨ã証æãããããã¨å³ãæãã¨æãããªãã ãããå¸nè§å½¢ããã£ãã¨ããããä¸ç¹Eãã¨ã£ã¦ããã¨ããã®å¸nè§å½¢ä¸ã®é£ç¶ããç¹A, B, C, Dã§ãFãç´ç·ABã¨ç´ç·CDã®äº¤ç¹ã¨ããã¨ãã«ãEãä¸è§å½¢BCFã®å
é¨ã«å
¥ããããªãã®ãåå¨ãããããã§ãEãBã¨Cã®éã«å
¥ãã¦ããã¨å¸(n+1)è§å½¢ãä½ããã
ã§ããå³ãæãã¦è¨¼æã¨ããã®ããå³ã«é¨ããããã§å«ãªã®ã¨ãåºæ¬çã«ã¹ããã§æ¸ãã¦ããã®ã§ãçµµãããã«ããã¨ããäºæ
ã§ã代æ°çãªè¨¼æãæ¸ããã¨æã£ããã¨ãã§ããªãæéãããã£ã¦ãã¾ã£ãã
å¤åãã»ã¨ãã©è»è¼ªã®åçºæãªãã ãããªãããããã誰ãèªã¾ãªãã ãããã©ãä¸å¿ç½®ãã¨ãããvã®(ç¹å®ã®)æ³ç·ã¨wã®å ç©ãã¨ãã®è¨å·ãæºåãã¦ãprojectionã¨ã使ã£ã¦ãã£ãã»ããã¯ããã«ç°¡åã«æ¸ããæ°ãããã
A, BâR^2ã«å¯¾ãã¦ãv(A, B)ã§AããBã¸ã®ãã¯ãã«ã表ããã¨ã«ããã
ã¨ãããããå ¨ã¦ã®ç¹ãä¸ç´ç·ã«ä¸¦ãã§ããã±ã¼ã¹ã¯é¤å¤ããã®ç«¯ã®ç¹ãã端ã®ç¹ã¾ã§ã®ç·åã¯ããæå³å¸nè§å½¢ã«ãè¦ãããã©ããããç¹æ®ã ã
A, B, C, DâR^2ã«å¯¾ãã¦ãA, B, Cãåä¸ç·ä¸ã«ãªãã¨ããå®æ°r1(D, A, B, C)ã¨r2(D, A, B, C)ãv(A, D)=r1(D, A, B, C) v(A, B)+r2(D, A, B, C) v(A, C)ã¨ãªããããªãã®ã¨ãã¦ã¨ããè¦ããã«v(A, D)ãåºåº{v(A, B), v(A, C)}ã«ã¤ãã¦è¡¨ç¾ãããã®ãr2(D, A, B, C)=r1(D, A, C, B)ãªãã ãã©ãæ°åãã§ãªãã®ã§ä¸¡æ¹å®ç¾©ãã¦ããã
(è£é¡1)R^2ã®æéé¨åéåXã"ãã®nåã®ç¹ããã©ã®ããã«3ã¤ã®ç¹ãé¸ãã§ããã®3ã¤ã®ç¹ãçµãã§ã§ãã3è§å½¢ã®å
é¨ï¼å¢çå«ãï¼ã«ä»ã®ç¹ãå
¥ããªããã¨"ãæºãããã¨ã¨ãä»»æã®A, B, C, DâXã«å¯¾ãã¦ã
(i)r1(D, A, B, C)â 0ãã¤r2(D, A, B, C)â 0
(ii)r1(D, A, B, C)<0ãªãã°ãr2(D, A, B, C)>0
ãæãç«ã¤ãã¨ã¯åå¤ã
(証æ) (â)ã¾ããä¸ç¹ãä¸ç´ç·ä¸ã«ãªãã°ãªããã¨ã証æãããA, B, CâXãä¸ç´ç·ä¸ã«ãã®é çªã§ä¸¦ãã§ããã¨ããããã®ã¨ãããã®ç´ç·ä¸ã«ãªãä¸ç¹DâXãã¨ãã¨ãä¸è§å½¢ACDå ã«Bãããã®ã§æ¡ä»¶ã«åããã
ãã¦ãä»»æã®A, B, C, DâXãã¨ã£ã¦ãb=r1(D, A, B, C), d=r2(D, A, B, C)ã¨ãããXã«å±ããä¸ç¹ãåä¸ç·ä¸ã«ä¸¦ã°ãªããã¨ããbâ 0ãã¤câ 0ãb<0ãä»®å®ããc>0ãå°ãããã«c<0ãä»®å®ããããã®ã¨ãã(-b)v(A, B)+(-c)v(A, C)+v(A, D)=0(ãã¯ãã«)ãè¨ããããã£ã¦ãæããã«Aã¯ä¸è§å½¢BCDã®å é¨ã«ãããããã¯çç¾ã
ããæããã«ã£ã¦æ¸ãããçµµãæãã¨æããã£ã½ãè¦ãããã©ãã©ããã£ã¡ãæ¸ãã°ããã®ã ãããä¸è§å½¢ã¯å¸ã ãããä¸è§å½¢BCDã®å¢çãå«ãå é¨ã¯v(A, E)=b' v(A, B)+c' v(A, C)+d' v(A, D)ãã¤b', c', d'>0ãã¤b'+c'+d'=1ãã¿ãããããªEå ¨ä½ã®éåã«ãªããã¨ããããã§ãAãä¸è§å½¢BCDã®å¢çãå«ãå é¨ã«å±ããããã«ã¯b' v(A, B)+c' v(A, C)+d' v(A, D)=0ãã¤b', c', d'>0ãã¤b'+c'+d'=1ãã¿ãããããªb', c', d'ãããã°ãããã®ã ãã©ãb'+c'+d'=1以å¤ã®æ¡ä»¶ã¯b', c', d'ãåæã«å®æ°åãã¦ãã¿ãããç¶ããã®ã§ãb'+c'+d'=1ãã¿ããããã«å¤æ´ãããã¨ã¯å®¹æãã£ã¦ãã¨ã§ã大ä¸å¤«ããªã
(â)ä»»æã®A, B, C, DâXã«å¯¾ãã¦ãDãä¸è§å½¢ABCã®å
é¨ã«å±ããªããã¨ã示ããèçæ³ã®ãããDãä¸è§å½¢ABCã®å
é¨ã«å±ãã¦ããã¨ä»®å®ãããb=r1(D, A, B, C), d=r2(D, A, B, C)ã¨ããããã®ã¨ããæ¡ä»¶ã«ããbâ 0ãã¤câ 0ãã¾ããDãä¸è§å½¢ABCã®å
é¨ã«å±ãã¦ãããã¨ããb>0ãã¤c>0ãã¤b+câ¦1ã¨ãªãã
ããã¨ãv(A, C)=(-b/c) v(A, B)+(1/c) v(A, D)ãããã§ãv(D, A)=-v(A, D)ãã¤v(A, B)=-v(D, A)+v(D, B)ã§ãããã¨ã使ãã¨ãv(A, C)=(-b/c) (-v(D, A)+v(D, B) )+(-1/c) v(D, A)=(-b/c) v(D, B)+( (b-1)/c) v(D, A)ãããã¨ãb+câ¦1ã§ãããã¨ãããb-1â¦-c<0ããã£ã¦ã(-b/c) <0ãã¤(b-1)/c<0ãããã¯æ¡ä»¶ã«çç¾ããã
(è£é¡è¨¼æäº)
ãã®æ¡ä»¶ã(*)ã¨ã§ãæ¸ãããã
(è£é¡2) ä»»æã®ç¹A, B, C, Dã«å¯¾ãã¦ã
(i) r1(D, B, A, C)=r1(D, C, A, B)=1-r1(D, A, B, C)-r2(D, A, B, C)ã
(ii) r2(D, B, A, C)=r2(D, A, B, C)
(iii) r2(D, C, A, B)=r1(D, A, B, C)ã
(証æ)
v(B, D)=v(B, A)+v(A, D)=v(B, A)+r1(D, A, B, C) v(A, B)+r2(D, A, B, C) v(A, C)=v(B, A)-r1(D, A, B, C) v(B, A)+r2(D, A, B, C) (v(A, B)+v(B, C))=v(B, A)-r1(D, A, B, C) v(A, B)-r2(D, A, B, C) v(B, A)+r2(D, A, B, C) v(B, C)=(1-r1(D, A, B, C)-r2(D, A, B, C)) v(B, A)+r2(D, A, B, C) v(B, C)ããã£ã¦, r1(D, B, A, C)=1-r1(D, A, B, C)-r2(D, A, B, C)ãã¤r2(D, B, A, C)=r2(D, A, B, C)ã
å段ã®çµæã使ãã¨ãr1(D, C, A, B)=1-r1(D, A, C, C)-r2(D, A, B, C)
(証æäº)
ããä¸ã¤è£é¡ã
(è£é¡3){A, B, C, D}ã(*)ãã¿ããã¨ããããããr1(D, A, B, C)<0ãªãã°ã
(i) r2(D, A, B, C)<1-r1(D, A, B, C)
(ii) r1(D, C, A, B)>0ãã¤r2(D, C, A, B)<0
(iii) r1(D, B, A, C)>0ãã¤r2(D, B, A, C)>0ã
(証æ)
(i) è£é¡2ã«ãããr1(D, C, A, B)=1-r2(D, A, B, C)-r1(D, A, B, C)ãã¤r2(D, C, A, B)=r1(D, A, B, C)ãããã¨ãr2(D, C, A, B)<0ãªã®ã§ãr1(D, C, A, B)>0ãè£é¡2ã«ããã1-r2(D, A, B, C)-r1(D, A, B, C)=r1(D, C, A, B)ããã£ã¦ã1-r2(D, A, B, C)-r1(D, A, B, C)>0ãªã®ã§ãr1(D, A, B, C)<1-r2(D, A, B, C)ã
(ii) (i)ã®è¨¼æããã
(iii) v(B, D)=v(B, A)+v(A, D)=v(B, A)+r1(D, A, B, C) v(A, B)+r2(D, A, B, C) v(A, C)=(1-r1(D, A, B, C) ) v(B, A)+r2(D, A, B, C) (v(A, B)+v(B, C) )=(1-r1(D, A, B, C)-r2(D, A, B, C) ) v(B, A)+r2(D, A, B, C) v(B, C)ããã£ã¦ã(i)ããr1(D, B, A, C)=1-r1(D, A, B, C)-r2(D, A, B, C)>0 ãã¤r2(D, B, A, C)=r2(D, A, B, C)>0ã
(証æäº)
(è£é¡4)
A_1, A_2, â¦, A_nãå¸nè§å½¢ã«ãªããã¨ã¨ãä»»æã®iã¨kâ i, i+1ã«å¯¾ãã¦r1(A_k, A_i, A_{i-1}, A_{i+1})>0ã¨ãªããã¨ã¯åå¤ããªããAã®æ·»åã¯mod nã§èãã¦ããããã¨ã«ãã¦ãä¾ãã°i=1ã®ã¨ãã¯ãr1(A_k, A_1, A_n, A_2)>0ã¨è§£éããã
(証æ)
ããã§ãn(A_i, A_{i+1})ããA_i A_{i+1}ã®åä½æ³ç·ãã¯ãã«ã§ãv(A_i, A_{i-1})ã»n(A_i, A_{i+1})>0ã¨ãªããããªãã®ã¨ãããããã¨ãA_iã¨A_{i+1}ãéãç´ç·ãèãã¦å¹³é¢ãããã§2ã¤ã®é¨åã«åããã¨ããä»»æã®kâ i, i+1ã«å¯¾ãã¦A_{i-1}ã¨A_kãåãé¨åã«å
¥ãã¨ãããã¨ã¨ãv(A_i, A_k)ã»n(A_i, A_{i+1})>0ãåå¤ã«ãªããã¨ããããã§ãã¾ããA_1, A_2, â¦, A_nãå¸nè§å½¢ã«ãªããã¨ã¨ãä»»æã®iã¨kâ i, i+1ã«å¯¾ãã¦v(A_i, A_k)ã»n(A_i, A_{i+1})>0ãæãç«ã¤ãã¨ãåå¤ã¨ãªãã
ãã£ã¦ãä»»æã®iã¨kã«å¯¾ãã¦ãv(A_i, A_k)ã»n(A_i, A_{i+1})ã¨r1(A_k, A_i, A_{i-1}, A_{i+1})ã®ç¬¦å·ãä¸è´ãããã¨ãããã°ãããããã¯ãv(A_i, A_k)ã»n(A_i, A_{i+1})=(r1(A_k, A_i, A_{i-1}, A_{i+1}) v(A_i, A_{i-1})+r2(A_k, A_i, A_{i-1}, A_{i+1}) v(A_i, A_{i+1}))ã»n(A_i, A_{i+1})=r1(A_k, A_i, A_{i-1}, A_{i+1}) v(A_i, A_{i-1})ã»n(A_i, A_{i+1})ã¨ãªãã®ã§ãv(A_i, A_{i-1})ã»n(A_i, A_{i+1})>0ã¨ãªããã¨ãããããã
(証æäº)
(è£é¡4')A_1, A_2, â¦, A_nãå¸nè§å½¢ã«ãªããã¨ã¨ãä»»æã®iã¨kâ i, i+1ã«å¯¾ãã¦r1(A_k, A_i, A_{i-1}, A_{i+1})>0ãã¤r2(A_k, A_i, A_{i-1}, A_{i+1})>ã¨ãªããã¨ã¯åå¤ã
ããã¾ã§ããã°å¤§ä¸å¤«ã帰ç´æ³ã§ãããã¨ã«ãããnâ§3ãèªç¶æ°ã¨ãã¦ãä»»æã®R^2ã®nå é¨åéåXã«å¯¾ãã¦ã(*)ãæãç«ã¦ã°Xã®å ãçµãã§å¸nè§å½¢ãã¤ãããã¨ãã§ãããã¨ãä»®å®ãããããã§ãä»»æã®R^2ã®n+1å é¨åéåXã«å¯¾ãã¦ã(*)ãæãç«ã¦ã°Xã®å ãçµãã§å¸(n+1)è§å½¢ãã¤ãããã¨ã示ããXã®å Dãä»»æã«åããX'=X\{D}ã¨ããã帰ç´æ³ã®ä»®å®ã«ãããX'ã®å ãçµãã nå¸è§å½¢A_1, â¦, A_nãåå¨ããã
(è£é¡5)r1(D, A_i, A_{i-1}, A_{i+1})<0ã¨ãªããããªiãä¸ã¤ã ãåå¨ããã
(証æ) ãããã«ããã©ãã«ãªã£ã¦ãããçµµãæãã°ãããã§ãããâ A_i A_1 A_2 < â D A_1 A_2 < A_{i+1} A_1 A_2ã¨ãªããããªiãã¨ãã°ãããä¸ææ§ãããããã
(証æäº)
ããã§ãA_1, â¦, A_i, D, A_{i+1}, â¦, A_nãå¸(n+1)è§å½¢ã¨ãªããã¨ã示ãã
å¿
è¦ãªãæ·»åãæ¯ãç´ãã¦ãi=2ãä»®å®ãã¦ããããããã§ã
(i) ä»»æã®kâ 1,2ã«å¯¾ãã¦ãr1(A_k, A_2, A_1, D)>0
(ii) ä»»æã®kâ 3, 4ã«å¯¾ãã¦ãr1(A_k, A_3, D, A_4)>0
(iii) ä»»æã®kâ 2, 3ã«å¯¾ãã¦ãr1(A_k, D, A_2, A_3)>0
(iv) ä»»æã®kâ 2, 3ã«å¯¾ãã¦r1(D, A_k, A_{k-1}, A_k)>0
ãããã°ãããb=r1(D, A_2, A_1, A_3), c=r2(D, A_2, A_1, A_3)ã¨ãããb<0ãã¤c>0ã¨ãªããã¨ã«æ³¨æãb'=r1(D, A_3, A_2, A_4), c'=r2(D, A_3, A_2, A_4)ã¨ããã
(Claim) b'>0ãã¤c'<0
(証æ)
v(A_3, D)=v(A_3, A_2)+v(A_2, D)=v(A_3, A_2)+b v(A_2, A_1)+c v(A_2, A_3)=(1-c) v(A_3, A_2)+b v(A_2, A_1)
=(1-c) v(A_3, A_2)+b (v(A_3, A_1)-v(A_3, A_2))=(1-c-b) v(A_3, A_2) +b (r1(A_1, A_3, A_2, A_4)v(A_3, A_2)+r2(A_1, A_3, A_2, A_4)v(A_3, A_4))=(1-c-b+b (r1(A_1, A_3, A_2, A_4)) v(A_3, A_2) +b r1(A_1, A_3, A_2, A_4) v(A_3, A_4)ããã£ã¦ãr2(D, A_3, A_2, A_4)=b r1(A_1, A_3, A_2, A_4)<0ããã£ã¦ãr1(D, A_3, A_2, A_4)>0ã
(Claim証æäº)
(i) ä»»æã®kã«å¯¾ãã¦ãr1(A_k, A_2, A_1, D)>0
ã¾ããv(A_2, D)=b v(A_2, A_1)+c v(A_2, A_3)ãªã®ã§v(A_2, A_3)=(-b/c) v(A_2, A_1)+(1/c) v(A_2, D)ã
ãã£ã¦ãv(A_2, A_k)=r1(A_k, A_2, A_1, A_3) v(A_2, A_1)+r2(A_k, A_2, A_1, A_3) v(A_2, A_3)=r1(A_k, A_2, A_1, A_3) v(A_2, A_1)+r2(A_k, A_2, A_1, A_3) ( (-b/c) v(A_2, A_1)+(1/c) v(A_2, D) )=(r1(A_k, A_2, A_1, A_3)-r2(A_k, A_2, A_1, A_3) (b/c) ) v(A_2, A_1)+(r2(A_k, A_2, A_1, A_3)/c) v(A_2, D)ããã£ã¦ãr1(A_k, A_2, A_1, D)=r1(A_k, A_2, A_1, A_3)-r2(A_k, A_2, A_1, A_3) (b/c)>0ã
(ii) ä»»æã®kã«å¯¾ãã¦ãr1(A_k, A_3, D, A_4)>0
v(A_3, D)=b' v(A_3, A_2)+c' v(A_3, A_4)ãªã®ã§ã
v(A_3, A_2)=(v(A_3, D)-c' v(A_3, A_4))/b'ããã£ã¦ãr1(A_2, A_3, D, A_4)>0ãã¤r2(A_2, A_3, D, A_4)>0ã
ããã¨ãv(A_3, A_k)=r1(A_k, A_3, A_2, A_4) v(A_3, A_2)+r2(A_k, A_3, A_2, A_4) v(A_3, A_4)=r1(A_k, A_3, A_2, A_4) (r1(A_2, A_3, D, A_4) v(A_3, D)+r2(A_2, A_3, D, A_4) v(A_3, A_4))+r2(A_k, A_3, A_2, A_4) v(A_3, A_4)=r1(A_k, A_3, A_2, A_4) r1(A_2, A_3, D, A_4) v(A_3, D)+(r1(A_k, A_3, A_2, A_4) r2(A_2, A_3, D, A_4)+r2(A_k, A_3, A_2, A_4))v(A_3, A_4)ãããã«ãããr1(A_k, A_3, D, A_4)=r1(A_k, A_3, A_2, A_4) r1(A_2, A_3, D, A_4)>0ã
(iii) ä»»æã®kã«å¯¾ãã¦ãr1(A_k, D, A_2, A_3)>0
v(A_3, D)=b' v(A_3, A_2)+c' v(A_3, A_4)ãªã®ã§ãv(A_3, A_4)=(1/c') v(A_3, D)-(b'/c') v(A_3, A_2)=(1/c') v(A_3, D)-(b'/c') (v(D, A_2)-v(D, A_3))=-(b'/c') v(D, A_2)+(-1/c'+b'/c') v(D, A_3)
v(D, A_k)=v(D, A_3)+r1(A_k, A_3, A_2, A_4) v(A_3, A_2) +r2(A_k, A_3, A_2, A_4) v(A_3, A_4)=v(D, A_3)+r1(A_k, A_3, A_2, A_4) (v(D, A_2)-v(D, A_3))+r2(A_k, A_3, A_2, A_4) (-(b'/c') v(D, A_2)+(-1/c'+b'/c') v(D, A_3))=(r1(A_k, A_3, A_2, A_4)-r2(A_k, A_3, A_2, A_4) (b'/c'))v(D, A_2)+(1-r1(A_k, A_3, A_2, A_4)+r2(A_k, A_3, A_2, A_4) (-1/c'+b'/c') )v(D, A_3))ããã£ã¦ãr1(A_k, D, A_2, A_3)=(r1(A_k, A_3, A_2, A_4)-r2(A_k, A_3, A_2, A_4) (b'/c'))>0
(iv) ä»»æã®kã«å¯¾ãã¦r1(D, A_k, A_{k-1}, A_k)>0
è£é¡5ã«ããã
-
-
- -
-
èå³ãããã®ã¯ãããã¯ããé«ã次å ã«æ¡å¼µã§ããã®ãã£ã¦ãã¨ã ãã©ããã¼ã¨ã誰ãæãã¦ã
ãclub guessing sequenceã®åå¨å®çã®ãκãå¯ç®ã®å ´åã®æ°å¦ã¬ã¼ã«é¢¨è§£èª¬ãèªã¿ããã§ãããæ¸ãã
æ¾èª²å¾ããã¤ãéãå³æ¸å®¤ã«æ¥ã¦ã¿ãã¨ããã©ã¡ããããªã«ããé£ããé¡ããã¦æ¬ã¨ã«ããã£ããã¦ããã
åãä»åº¦ã¯ä½ãèªãã§ããã®ï¼ã
ããã©ãããå
輩ãâ¦ãã®åããã«ã«å
輩ãclub guessing sequence(CGå)ã®åå¨è¨¼æãæãã¦ä¸ããã¾ããããã
åããããéåã¨åã ãã©ããμã¨Îºãæ£ååºæ°ã§Î¼^+<κãã¿ãããããªãã®ãªãã°ãκâ©Cof(μ)ä¸ã«CGåãåå¨ããã
ããã©ããã®ãCof(μ)ã£ã¦ãªãã§ããï¼ã
åããããå
±çµæ°ãμã«ãªãé åºæ°ãããªãã¯ã©ã¹ã ããã
ããã©ããããããªãã§ããããã®æ¬ã§ã¯éã表è¨ã«ãªã£ã¦ãã¦â¦ã
ã¨è¨ããã¦ã¿ãæ¬ã®è¡¨ç´ã«ã¯S.Shelah Cardinal Arithmeticï¼
åãããããã®æ¬ã¯æåã«å¦ã¶ããã®ãã®ã¨ãã¦ã¯å§ããããªãããããããã°ãæ°å¹´åã«ãæ°å¦ãã«ãµã¼ãã¤ãâ¦ã
ãã«ã«ããµã
ããCGåã®åå¨è¨¼æããã
åãããã£ã
ãã¤ããªããåçªãªç»å ´ã ã
ãã«ã«ãããã§ããã©ã¯ä½ãç¥ãããã£ãã®ï¼ã
ããã©ãã¯ããå
輩ã証æãã¦ãã ãã£ãã¨ãã¯Î¼ãéå¯ç®ãªãã¨ãä»®å®ãããããªãã§ãããã
åãããã ã£ããããã®æ¹ãç°¡åã ããã¾ããããããã¨è¨ã£ã¦ããã
ããã©ãã§ããå®çã¯Î¼ãå¯ç®ã§ãæãç«ã¤ãã§ãããããããæ°ã«ãªã£ã¡ãã£ã¦ãã
ãããèãããã«ã«ããã¯å¤©äºãè¦ã¦å°ãèããã¨è¨ã£ãã
ãã«ã«ãããã¾ã§ãªããããªã«é£ãããªããã§ãå ´æãå¤ããããã
ãµã¨å¨å²ãè¦æ¸¡ãã¨ãç谷女å²ãã¯ããã¨ããã¿ããªã®å·ããè¦ç·ãæããã
è¿ãã®æ室ã«ç§»åããã¨ãã«ã«ããã¯ãã§ã¼ã¯ãã¨ã£ã¦è©±ãå§ããã
-
-
- -
-
ã¾ãããããã®Î²âκâ©Cof(Ï)ã«å¯¾ãã¦ãé åºåÏãªÎ²ã®éæçé¨åéåC_βãã¨ããããåã¶äººãããã ããããè¨ã£ã¦ããã¨ã(C_β : βâκâ©Cof(Ï))ãåãæç¹ã§é¸æå
¬çãå¿
è¦ã ã
ãã¦ãκâ©Cof(Ï)ä¸ã«CGåããªãã¨ä»®å®ãããããããã¨ãκã®clubé¨åéåDã§ã{βâκâ©Cof(Ï) : C_βâD}ãéå®å¸¸ã«ãªããããªãã®ãåå¨ããããã ãªã
-
-
- -
-
ããã©ãããã§ãμãéå¯ç®ã®ã¨ãã¯C_βâ©Dãæ°ããåã¨ãã¦ãåããã¨ãç¹°ãè¿ãã¾ãããã§ããβãå¯ç®ã®ã¨ãã¯ãβãDã®æ¥µéã ã£ãã¨ãã¦ãC_βâ©Dãβä¸éæçã¨ã¯éãã¾ããã空éåã«ã ã£ã¦ãªãã¾ãã
ãã«ã«ããããã ãããããã§Shelahã¯glue functionã¨èªãã§ãããã®ä½¿ãããã®ãã¼ã¸ã®glã ããããããªç¶æ³ã«å¯¾å¦ããããã«ããã®å®ç¾©ã«ã¯ç´°ããç´°å·¥ããã¦ããããã©ããç§ãã¡ã®ç®çã«ã¯ã¯ããã«åç´ãªãã®ã§è¯ããã
-
- -
gl(C, D)ã{sup(γâ©D) : min(D)<γâC}ã§å®ç¾©ããããæå³ã¨ãã¦ã¯ãDã¯Îºã®clubé¨åéåãCã¯Îºã®é¨åéåã§é åºåã¯Ïãβãsup(C)ã¨ãã¦ãããã
ãã®é¢æ°ã¯ä¸è¨ã®æ§è³ªãæã£ã¦ãã:
(i) gl(C, D)âD
(ii) βãDã®æ¥µéç¹ã§ãããªãã°ãgl(C, D)ã¯Îã®éæçé¨åéåã
(iii) gl(C, D)=Cã¨CâDã¯åå¤
ãã®gl(C, D)ãCâ©Dã®ä»£ããã«ä½¿ããã ã
-
- -
ããã©ãã¯ãããã
大声ããããããã©ã¡ãããã¿ããã«ã«ããã¨åã
ããã©ããã®åãã¡ã¯ãã©ã·ã¥ã¼ããã¤ãã¦ããã§ããã
ããè¨ãã¨ãããã©ã¡ããã¯ãã¼ãã«çµµãæãå§ããã
ããã©ãCã®å
ã®åãã¡Î³ã¯æã¡å ´ã§å¾
æ©ãã¦ããã§ãããããã«Dãããã¨ãμãéå¯ç®ã®ã¨ãã¯Î³âDã®ã¨ãã ãåæ ¼ã§ãγâDã ã¨å¤±æ ¼ãã¡ãããã§ããã
ãã«ã«ãç¶ãã¦ã
ããã©ãã§ãä»åº¦ã¯ãã©ã·ã¥ã¼ãä»ãã ãããγã¡ããã¯ãã£ãããã¡ãªããDã®å
ãæ¢ãã¦æåã«è¦ã¤ãã£ãã¨ããã§æ¢ã¾ããã§ããã
åãmin(D)<γã ããè¦ã¤ãããªãã£ããå¤±æ ¼ã£ã¦ãã¨ããªãã
ãã«ã«ããããããã¨ããããã£ã¦æ¢ãã«ããããã(ii)ãæãç«ã¤ãã
-
-
- -
-
ããã¦ãå ¨ã¦ã®Î¾<Ï_1ã«å¯¾ãã¦å¸°ç´çã«(C^ξ_β : βâκâ©Cof(Ï))ã¨D_ξãå®ç¾©ããã帰ç´æ³ã®ä»®å®ã¯ãä»»æã®Î²âκâ©Cof(Ï)ã«å¯¾ãã¦C^ξ_βãβã®éæçé¨åéåã¨ãªã£ã¦ãããã¨ã¨D_ξã¯Îºã®clubé¨åéåã§ãä»»æã®Î·<ξã«å¯¾ãã¦D_ξâD_ηã
ã¾ããå ¨ã¦ã®Î²âκâ©Cof(Ï)ã«å¯¾ãã¦C^0_β=C_βã¨ããã¾ãD_0ãκããå°ãã極éé åºæ°å ¨ä½ã®éåã¨ããã
帰ç´æ³ã®ä»®å®ãæºããããã«D_ξã¨
(C^ξ_β : βâκâ©Cof(Ï))ãå®ç¾©ããã¦ããã¨ããããã®ã¨ãã(C^ξ_β : βâκâ©Cof(Ï))ã¯CGåã§ã¯ãªãã®ã§ãä»»æã®Î²ã«å¯¾ãã¦C^ξ_βâD_{ξ+1}ãæãç«ããªããããªÎºã®clubé¨åéåD_{ξ+1}ãåå¨ãããclubã§ããéãD_{ξ+1}ã¯å°ãããã¦ãæ±ããããæ§è³ªãæã¡ç¶ããã®ã§D_{ξ+1}âD_ξãä»®å®ãã¦ãä¸è¬æ§ã失ããªããä»»æã®Î²ã«å¯¾ãã¦ãβãD_{ξ+1}ã®æ¥µéç¹ã§ããã¨ãã¯C^{ξ+1}_β=C_βãããã§ãªãã¨ãã¯C^{ξ+1}_β=gl(C_β, D_{ξ+1})ã¨ããã
ξã極éé åºæ°ã ã¨ããã¨ãã¯ãD_ξ=â©_{η<ξ}D_ηã¨ãããããã¦ãä»»æã®Î²ã«å¯¾ãã¦ãβãD_ξã®æ¥µéç¹ãªãã°C^ξ_β=C_βãããã§ãªãã¨ãã¯C^ξ_β=gl(C_β, D_ξ)ã¨ããã
-
-
- -
-
åãã¤ã¾ããD_ξãå®ç¾©ããããããããC^ξ_βãå®ç¾©ããæ¹æ³ã¯Î¾ãå¾ç¶é åºæ°ã§ã極éé åºæ°ã§ãåããªã®ããã
ãã«ã«ããããã§ããã®æ¹ãã¤ã¡ã¼ã¸ãããããã
-
-
- -
-
ãã¦ãããã§D=â©_{ξ<Ï_1}D_ξã¨ããããããã¦Î²ãDã®æ¥µéç¹ã§ãããã¤Îºâ©Cof(Ï)ã®å ã¨ãªããããªãã®ã¨ãããããã§ã示ãããã®ã¯C^ξ_β=C^{ξ+1}_βã¨ãªããããªÎ¾<Ï_1ãåå¨ãããã¨ã
ã¾ããããã示ããã¨ãã¦çç¾ãåºãã¦ãããããDâD_ξãã¤Î²ã¯Dã®æ¥µéç¹ãªã®ã§ãβã¯D_ξã®æ¥µéç¹ã§ããããC^{ξ+1}_βã®æ§æã«ãããC^{ξ+1}_β=gl(C_β, D_{ξ+1})ã¨ãªããglã®æ§è³ªããgl(C_β, D_{ξ+1})âD_{ξ+1}ã¨ãªããC^ξ_βâD_{ξ+1}ãè¨ãããããã¯D_{ξ+1}ã®æ§æã«çç¾ããã
-
-
- -
-
åããã¼ã¨ãD_{ξ+1}ã®æ§æã£ã¦ããã®ã¯â¦ã
ä¸è¶³å
ã«ãã¼ããé¡ã£ã¦ããããã©ã¡ãããããããã
ããã©ãããã§ãããå
輩ãããã®ã¨ãã(C^ξ_β : βâκâ©Cof(Ï))ã¯CGåã§ã¯ãªãã®ã§ãä»»æã®Î²ã«å¯¾ãã¦C^ξ_βâD_{ξ+1}ãæãç«ããªããããªÎºã®clubé¨åéåD_{ξ+1}ãåå¨ããããã¾ãã«D_{ξ+1}ã®åãæ¹ã«åãã¦ãããã§ããã
ãã«ã«ããããåä¾ã®ã¯ããåä¾ã§ãªããã¨ã示ãããã ãã
-
-
- -
-
ãããããC^ξ_β=C^{ξ+1}_βã¨ãªããããªÎ¾<Ï_1ãåå¨ãããã¨ã証æãããã
ã¾ããæåã«ã(min(D_ξ) : ξ<Ï_1)ã¯éæ¸å°åã§ãβãä¸çã«ãã¤ãcf(β)=Ïã ãããã®åã¯ä¸æãç¶ãããã¨ã¯ã§ããã«éä¸ã§ã¨ã¾ããããªãã¡ãζ'<Ï_1ã¨Î´ãåå¨ãã¦ãä»»æã®Î¶'â¦Î¾<Ï_1ã«ãããã¦ãmin(D_ξ)=δãæºããã
次ã«ä»¥ä¸ã®è£é¡ã証æããã
è£é¡: ä»»æã®Î³âC_βã«å¯¾ãã¦ã以ä¸ãæºãããããªÎ¶_γ<Ï_1ãåå¨ãã:
ä»»æã®Î¶_γâ¦Î¾<Ï_1ã«å¯¾ã㦠min(D_ξ)<γãªãã° sup(γâ©D_ξ)=sup(γâ©D_{ζ_γ})
-
-
- -
-
ããã©ããã£ã¨ãã£ã¨ã
åãè½ã¡çãã¦ãã²ã¨ã¤ã²ã¨ã¤èªãã§ããããä»»æã®Î¶_γâ¦Î¾<Ï_1ãæºãããªãã¨ãããªãã®ã¯ãmin(D_ξ)<γ ãªãã° sup(γâ©D_ξ)=sup(γâ©D_{ζ_γ})ãã¨ããæ¡ä»¶ã ãã¾ããmin(D_ξ)<γã£ã¦ã©ããããã¨ã ãããã
ããã©ãD_ξã¯å¸°ç´çã«å®ç¾©ãããκã®clubé¨åéåã§ãããã
åããããmin(D_ξ)<γãæºããããã¨ãγâ©D_ξã¨ããéåã«ã¯ã©ãããå½±é¿ãããã ãããã
ããã©ãγâ©D_ξã¯Î³ããå°ããD_ξã®å
å
¨ä½ã ããããã£ããããã¾ãããmin(D_ξ)<γã¯Î³â©D_ξâ â
ã¨åå¤ã§ããã¤ã¾ãsup(γâ©D_ξ)ãè¨ç®ã§ããã£ã¦ãã¨ã§ãããã
åããããããã¨ãã ãããsup(γâ©D_ξ)ãè¨ç®ã§ãããªãããã¯sup(γâ©D_{ζ_γ})ã¨çããã£ã¦ãã¨ãè¨ã£ã¦ãããããã
ããã©ãã§ãsup(γâ©D_{ζ_γ})ã¯ã©ããã¦è¨ç®ã§ãããã§ããï¼ã
ãã«ã«ã(D_ξ : ξ<Ï_1)ã¯ã©ããªæ§è³ªãæã¤ãã
åããããã(D_ξ : ξ<Ï_1)ã¯ä¸éåãªãã ã
ããã©ãã©ããããã¨ã§ããï¼ã
åãD_{ξ+1}ãã¨ãã¨ãã«ã¯D_ξã®é¨åéåã§ãããã¨ãæ¡ä»¶ã«å
¥ãã¦ããããξã極éã®ã¨ãã¯D_ξ=â©_{η<ξ}D_ηã¨ãã¦ãããã ãããä»»æã®Î·<ξ<Ï_1ã«å¯¾ãã¦D_ξâD_ηãè¨ãããã ããã ãããζ_γâ¦Î¾ã¨ããä»®å®ããD_ξâD_{ζ_γ}ãããããã¨ãããã¨ã¯ãγâ©D_ξã空ã§ãªããªãγâ©D_{ζ_γ}ã ã£ã¦ç©ºãããªããã ã
ãã«ã«ããããã(sup(γâ©D_ξ) : γ<Ï_1)ã¯ã©ããªåï¼ã
ããã©ããããã¾ããã(D_ξ : ξ<Ï_1)ã¯ä¸éåã ããã(sup(γâ©D_ξ) : γ<Ï_1)ã¯æ¸å°åã«ãªãã¾ããã
ãã«ã«ãæ£ç¢ºã«ã¯non-increasingãã
åãããã¦ãé åºæ°ã®éä¸æåã¯ã©ããã§æ¢ã¾ã£ã¦ããã¨ãããã¨ãï¼ã
ãã«ã«ããããã ããζ_γãåå¨ãããã
ããã©ãè£é¡ã証æã§ãã¾ãããã
-
-
- -
-
ããã§ãζ=sup({ζ_γ : γâC_β}âª{ζ'})ã¨ãããããã¨ãä»»æã®Î¶â¦Î¾<Ï_1ã«å¯¾ãã¦ã¾ãmin(C_ξ)=δãè¨ãããã ãããC^ξ_β=gl(C_β, D_ξ)={sup(γâ©D_ξ)}: min(D_ξ)<γâC_β}={sup(γâ©D_ξ)}: δ<γâC_β}ãã¨ããããδ<γâC_βãæºããä»»æã®Î³ã«å¯¾ãã¦ãξâ§Î¶â§Î¶_γãã sup(γâ©D_ξ)=sup(γâ©D_ζ)ãè¨ãããããªãã¡ãC^ξ_β={sup(γâ©D_ζ)}: δ<γâC_β}ã¨ãªãã
ã¤ã¾ããä»»æã®Î¶â¦Î¾<Ï_1ã«å¯¾ãã¦C^ξ_βãξã«ä¾åããã«è¨è¿°ã§ãããã¨ã«ãªããã ãããC^ξ_β=C^{ξ+1}_βãè¨ããã
-
-
- -
-
ãã«ã«ãããã§ä¸ä»äºããã¾ãã
ããã©ããã£ãè£é¡ã証æã§ããã ãããâ¦ã
åãã»ããããã§è£é¡ãè¨ãããå®çãè¨ãããã¨ã示ãã¦ãããã
ãã¼ãã®è©²å½é¨åãæå·®ããªããè¨ãã¨ããã©ã¡ããã¯ããªãããªããçããã
ããã©ãããã£ãããã§ãããããããªããã
ãã«ã«ããã¯åããç´å¾ããã®ã確èªããã¨åº§ã£ã¦ãã§ã³ã¬ã¼ããé£ã¹å§ãããããã©ã¡ããã¯ãã¼ããæåããèªã¿è¿ãã¦ããã
ããã©ããªãã大å¤ã§ããã
ãã«ã«ãããï¼cf(μ)ãéå¯ç®ã®ã¨ãã¨ã®æ¬è³ªçãªéãã¯æåããææ¡ãã¦ããããã ãã©ã
åããã©ã·ã¥ã¼ãï¼ã
ãã«ã«ããããããã¨ããã©ã·ã¥ã¼ãã£ã¦ä¾ãã¯æãã¤ããªãã£ããã©ããããããããã°ãã¨ã¯ä¸ç·ãç´°ãã調æ´ãããã ããã
åãé åºæ°ã£ã¦åç´ããã«è¦ããã®ã«ãããããªãã¨ãã§ãããã ããã
ãã«ã«ãç¡éä¸éåããªãã¨ããã®ã¯ã¨ã¦ãéè¦ãªæ§è³ªã ããã®ãã¨ã¯ãã®è¨¼æã ãã§ã¯ãªããä¾ãã°Todorcevicã®æå°æ©è¡çè«ã§ã¯ç¸¦æ¨ªç¡å°½ã«ä½¿ããã¦ããã
ããã©ããã®ãCGåã®åå¨ã証æãã¦ããã®ã«ãCGåã¯æ§æããªããã§ããã
ãã«ã«ããããããã¦ããã¯æ¬è³ªçãä¸ã¤ä¸ã¤ã®CGåã¯å¼·å¶æ³ã§å£ãããã§ãå
¨é¨å£ãã¨åºæ°ã¾ã§å´©ããã
ããã©ãä¸æè°ã§ãããèªç¶çãå¾®å¦ãªãã©ã³ã¹ãä¿ã£ã¦ããã®ã¨ä¼¼ã¦ãããã§ããããã
ãã«ã«ãã©ãã ããããã¾ããZFCã®ã¢ãã«ã¨ããã®ã人工çã§ç¡å³ä¹¾ç¥ãã¨ãæããããã©ããããã¨ããã§ããªãã®ãããããªããã
åããããããããã°ã証æãå§ããåã«ãããã¾ã§ãªããããªã«é£ãããªããã¨è¨ã£ã¦ããããããã®å
ã£ã¦ããã®ã¯ä½ï¼ã
ãã«ã«ãC_βâCof(>Ï)ã£ã¦æ¡ä»¶ãä»ãå ãããã¨ãã§ãããã ãããã¦ããã®æ¡ä»¶ãã¤ããCGåã使ã£ã¦ãκä¸ã®éå®å¸¸ã¤ãã¢ã«ãCof(Ï)ã«å¶éãããã®ã飽åã«ãªããªããã¨ã示ããã®ãGitik and Shelahãããã¯ç§ã®ç¥ãéãããå°ãåä»ãªè¨¼æã«ãªãã
åãããããã°ããæ°å¦ãã®ãµã¼ãã¤ã«ãããªãã¨ãâ¦ã
ã¨ã£ã¨ã£ããã«ã«ããï¼ã
çªç¶ãã¢ã®æ¹ãã声ãã
ã¨ã£ã¨ã£ãã¿ããªãããããã«ãã®è¾ºã«ãã¨ããã¨æãããã§ããããªé
ãã¾ã§ãã
ãã«ã«ãããã ãªãéãæå³ã§ãæããããã ã
ããã©ã帰ãã¾ãããï¼ã
-
-
- -
-
è¶ åå°½ãããããããå¤ã ã£ããééã£ã¦ãããã¦ããã ãã©ãã¨ããããæãã
åºæ°ã®ã¹ãã«ã¤ãã¦çãã¦ã¿ã
[éåè«] GCHãæãç«ããªãã¨ãã®ã¹ãã®å¤
ã«ãã¼ãã¿ããªãã¯ããæ°å¦ãã«æ¸ãããµã¼ãã¤èªãã§ã«ãã¼ã
æ£ååºæ°ã®ã¹ã(Eastonã®å®ç)
ä»æ´å
¥æå°é£ã§ããããæ¸ãã¾ãããã¾ããαãç¡éé åºæ°ã¨ããã¨ããããã®éæçé¨åéåã®æå°æ¿åº¦ãαã®å
±çµæ°(cofinality)ã¨ãããcf(α)ã§è¡¨ãããããããα={β: β<α}ãªã®ã§ãαã®é¨åéåã¨ããã®ã¯ãαããå°ããé åºæ°ãããªãéåã®ãã¨ã
κãåºæ°ã¨ããã¨ããcf(κ)=κã¨ãªãã¨ãã«ãκã¯æ£å(regular)ã§ããã¨ãããããã§ãªãã¨ãã¯ç¹ç°(singular)ã§ããã¨ãããÏã¯æ£åã§ãå
¨ã¦ã®å¾ç¶åºæ°ã¯æ£åãã¯æå°ã®ç¹ç°åºæ°ãæ£åãªæ¥µéåºæ°ã¯å¼±å°éä¸å¯è½åºæ°ã¨å¼ã°ãã¦ãã¦ãé常ã¯æãå°ãã巨大åºæ°ã¨ããããç¹ã«ãZFCããã¯ãã®åå¨ãè¨ããã¨ã¯ã§ããªããã¤ã¾ããç¹ç°ã§ãªã極éåºæ°ã¯ãç¹ã«ã§ãããã®ã ããã£ã¯ã£ã¯ã¼ã
(æ²é»)
æ£åãªåºæ°ã¯å§åçã«æ±ãããããEastonã«ãã以ä¸ã®å®çãå¼·å¶æ³ã®éçºå¾çµæ§æ©ã段éã§è¨¼æããã¦ããã
ââââ
GCHãä»®å®ãããFã次ã®æ¡ä»¶ãæºãããããªãæ£ååºæ°å
¨ä½ã®ã¯ã©ã¹ãå®ç¾©åã¨ããã¯ã©ã¹é¢æ°ã¨ããã
(i) ä»»æã®Îº<λã«å¯¾ãã¦ãF(κ)â¦F(λ)
(ii) cf(F(κ))>κ(ã±ã¼ãããã®è£é¡)
ãã®ã¨ããå
±çµæ§ãä¿ã¤ãããªå¼·å¶æ¡å¤§ã§ãä»»æã®æ£ååºæ°Îºã«å¯¾ãã¦2^κ=F(κ)ãæãç«ã¤ãããªãã®ãåå¨ããã
ââââ
ããã¤ãè£è¶³ããªãã¨ãã¡ããªãã¾ãã(i)ã¨(ii)ã¯F(κ)=2^κã¨ããã¨ZFCã§è¨¼æã§ããæ§è³ªãã¤ã¾ãã2^κ=F(κ)ãæºããã¢ãã«ãåå¨ããããã®å¿
è¦æ¡ä»¶ã
å¼·å¶æ¡å¤§ã¨ããã®ã¯ãå¼·å¶æ³ã¨ãããã¯ããã¯ã§ä½ããããæ¡å¤§ãããZFCã®ã¢ãã«ãå
ã®ã¢ãã«ãVã¨æ¸ãã¦ãWããã®æ¡å¤§ã¨ããã
å
±çµæ§ãä¿ã¤ã£ã¦ããã®ã¯ãcf(α)ã®å¤ãVã§è¨ç®ãã¦ãWã§è¨ç®ãã¦ãããããªãã¨ãããã¨ããã®ãã¨ãããåºæ°ãä¿ã¤ãã¨ãããªãã¡ä»»æã®Vä¸ã®åºæ°ÎºããWä¸ã§ãåºæ°ã§ãããã¨ãå°ããããéå¯ç®ãªåºæ°ãã¶ã£ãããå¼·å¶æ³ã¯ç°¡åã«ä½ããã®ã§ãéè¦ãªæ§è³ªã
ãã¼ã¨ããã§ã«ãããããã£ã¦ãã人ãå¤ãã¨æãã®ã§ãã£ããããã¨ãè¦ããã«æ£ååºæ°ã«é¢ãã¦ã¯(i)ã¨(ii)ã¨ããå¿
è¦æ¡ä»¶ãæºããããã«ãã³ãã¬ã¼ããä½ã£ã¦ããã¨ã2^κãããã«å¾ãããããããã ãã ããæ£ååºæ°ã«ã¤ãã¦ã¯ã»ã¼ãããã¨ã¯ãªãã
éå¯ç®ãªå ±çµæ°ããã¤ç¹ç°åºæ°(Silverã®å®ç)
ãããç¹ç°åºæ°ã§ã¯ã©ããªããã¨ããã¨ãJack Silverãä¸è¨ã®å®çã証æãã¦å½æã®ç 究è ãã¡ãã³ã£ããããã(ã¨èãã¦ãã)ã
ââââ
κãÏ<cf(κ)ãæºãããããªç¹ç°åºæ°ã¨ããããããä»»æã®Î»<κã«å¯¾ãã¦2^λ=λ^+ãæãç«ã¤ãªãã°ã2^κ=κ^+ãæãç«ã¤ã
ââââ
ãã®ãã¨ãããGCHãæºãããªãæå°ã®åºæ°ã¯ãå
±çµæ°ãéå¯ç®ã«ãªããããªç¹ç°åºæ°ã§ã¯ãªããã¨ãè¨ããããã®åã¡ãã£ã¨è©±é¡ã«åºãæ´ç¤ã«ãªããªãVã®è¶
ã¹ãã§æåã®è¨¼æã¯ä¸ãããã(ããã)ããã£ã¨ãä»ã¨ãªã£ã¦ã¯ã¯ããã«ãããããã証æãããã®ã ãã©(å¿ãããã©)ã
ãã¡ã¶ããããããªãçºæ®ãã¦ã¾ããªãå段è½ã
å ±çµæ°ãå¯ç®ãªç¹ç°åºæ°(Magidorã®å®ç)
ãããå ±çµæ°ãå¯ç®ãªç¹ç°åºæ°ãä¾ãã°ã§ã¯ã©ããã¨ããã¨ãMagidorãä¸è¨ã®å®çã§ãSilverã®å®çã¯å¯ç®å ±çµæ°ã®ã±ã¼ã¹ã«æ¡å¼µã§ããªããã¨ã示ããã
ââââ
ãã巨大åºæ°ã®ç¡çç¾æ§ãä»®å®ããã¨ãä»»æã®èªç¶æ°nã«å¯¾ã㦠2^{âµ_n}=âµ_{n+1}ãã¤2^{âµ_Ï}=âµ_{Ï+2}]
ââââ
ã¤ã¾ããã¯GCHãæºãããªãæå°ã®åºæ°ã«ãªãå¾ãããããããæåã®è¨¼æã§ä»®å®ãã¦ãã®ã¯almost hugeã ã£ãï¼ã¨ã¦ã大ãã巨大åºæ°ãææ°ã®çµæã¯å¿ãããã©ão(κ)ãåå大ãããã¤ãããã°ã2^{âµ_Ï}=âµ_{Ï_1}ã¨ãè¨ãããã ã£ããããç§ã¸ã®å®¿é¡ããããã¯ã
ZFCã®ã¿ã®ç¡çç¾æ§ã ãã§ã¯ãã¡ã§ã巨大åºæ°ãå¿
è¦ãªãã¨ã¯è¨¼æããã¦ãã
証æã¯å¤§æãå°ãªãã¨ãç§ã«ã¯ååæãã巨大åºæ°Îºã®ä¸ã«ããåºæ°ãÏåæ®ãã¦ãã³ãã³æ½°ããªããæºåããã¦ããã®æºåãããã¨ããã使ã£ã¦2^κãæã¡ä¸ããã
PCFçè«ã¨ã¹ãã®ä¸ç
ããããããã¾ã åºæ¥ã¦ãªãã¨ã2^{âµ_Ï}ã¯ãããã§ã大ãããªãã®ãã¨ããã¨ããããªãã¨ã¯ãªããã¨ã示ããã®ãShelahã®PCFçè«ã§ãä»£è¡¨æ ¼ã¯ä»¥ä¸ã®å®çã
ââââ
{âµ_Ï}^{âµ_0}<max{âµ_{Ï_4}, (2^{âµ_0})^+}]ã
ââââ
ãããããä¾ãã°ä»»æã®èªç¶æ°nã«å¯¾ãã¦ä»»æã®èªç¶æ°nã«å¯¾ãã¦2^{âµ_n}<âµ_Ïãæãç«ã¤ãªãã°ã2^{âµ_Ï}<âµ_{Ï_4}ãæãç«ã¤ãã¨ãè¨ãããã¤ã¾ããMagidorã®å®çã®2^{âµ_Ï}ã®å¤ã«ã¯âµ_{Ï_4}ã¨ããå¶éããããããã®4ã3ã«å¤ãããããã¯æªè§£æ±ºã
ãGCHãæºãããªãæå°ã®åºæ°ã¨ãã®ã¹ããã®ç 究ã¯ãããªæããããã§ã¯2^{âµ_Ï}ã®ãã¨ããæ¸ãã¦ãªããã©ãããã§ãªãå ´åã«ã¤ãã¦ãç 究ã¯ãã(ã¨ãããã2^{âµ_Ï}ã¯æã大å¤ãªã±ã¼ã¹)ã
GCHãå ¨ã¦ã®åºæ°ã§ç ´ããã¢ãã«
å¥æ¹åãããå ¨ã¦ã®åºæ°Îºã«ã¤ãã¦GCHãå´©ããã¢ãã«ãæåã«ä½ã£ãã®ã¯Woodinã¨ç§ã®å¸«å ã®å ±èã§ãããã§ã¯ä»»æã®åºæ°Îºã«å¯¾ãã¦2^κ=κ^+ãæãç«ã£ã¦ããããã¡ãã巨大åºæ°ãå¿ è¦ããã®ç 究ã¯Gitikã¨ãMerimovichã¨ãã«å¼ãç¶ããã¦ã2^κã®å¤ã¯è²ã ã³ã³ããã¼ã«ã§ããããã«ãªã£ã¦ãã(è«æèªããã¨ãããã ãã©ããããã©ã®ç¨åº¦ã³ã³ããã¼ã«ã§ããã®ãããããããããªãã£ã)ã
ã¨ãããããããªæãã
â
åç½®ã
Software Foundationã¡ãã£ã¨ãã¤èªãã§ãããããªãã ãã©ãæ°æ¥ããã£ã¡ãã£ãåé¡ã解ããä¸ã§ããªããããããã¼ããªè§£æ³ãè¦ã¤ãã£ããããªæ°ãããã®ã§ãã®ãã¨ãå«ãã¦æ¸ããããã§ããã°ãã£ã¡ã§åå¼·ä¼ã¨ãéããããã«ãªã£ãããããªã¨ããæ°æã¡ããã£ã¦è±èªã®æ¹ãèªãã§ããã®ã§ã翻訳ã§ã¯ãã§ã«å¦çããã¦ãããªãããããªããã
Basicsã®æ¹ã§ãã§ã«ãã£ã¦ããã®ãbinaryã¨ããç·´ç¿åé¡ã§ãããã¯ãbinã¨ããæ°ããåãå ¨ã¦ã®è¦ç´ ã
- ã¼ã
- ãã§ã«ããbinã®è¦ç´ ã®2å
- ãã§ã«ããbinã®è¦ç´ ã®2å足ã1
ã«ãªãããã«å®ç¾©ããªããã£ã¦ãã¨ã§ãããã¯ç§ã§ãç°¡åã
Inductive bin : Type := | bin_O : bin | bin_S0 : bin -> bin | bin_S1 : bin -> bin .
ãã¼ãã³ã³ã¹ãã©ã¯ã¿ã®ååã¨ããã£ã¨ã¹ã¿ã³ãã¼ããªãã¤ãããããã§ãããbin_ã¨ãæåã«ã¤ãã¦ããã®ã¯èªåãæ··ä¹±ããªãããã
ã次ã¯ãbinåã®ã¤ã³ã¯ãªã¡ã³ã
Fixpoint bin_inc (a : bin) : bin := match a with | bin_O => (bin_S1 bin_O) | bin_S0 p => (bin_S1 p) | bin_S1 p => (bin_S0 (bin_inc p)) end.
次ã¯binããnatã¸ã®å¤æã
Fixpoint bin_to_nat (a : bin) : nat := match a with | bin_O => 0 | bin_S0 p => ((bin_to_nat p) + (bin_to_nat p)) | bin_S1 p => (S ((bin_to_nat p) + (bin_to_nat p))) end.
ãã®æç¹ã§å ¨ã¦ã®b:binã«å¯¾ãã¦bin_to_nat (bin_inc b)=S (bin_to_nat b)ã証æãããã¨ãã¦inductionãªãã¨ã§ããªããï½ã¨ãã¤ã¶ããã¦ãããã§ãããã©ããèè ã¯ãã®æç¹ã§ã¯å ·ä½çãªãã®ã«é¢ãã¦ãã§ãã¯ãããã ãã®ã¤ããã ã£ãããã§ãã
ããã§æ¬é¡ã®Inductionã®ç« ã®binary_inverseãã¾ããnatããbinã¸ã®å¤æãbin_incããã§ã«ããããä½è£ã
Fixpoint nat_to_bin (n : nat) : bin := match n with | O => bin_O | S p => (bin_inc (nat_to_bin p)) end.
ããã§ãbin_to_nat (nat_to_bin n)=nãå ¨ã¦ã®n:natã«å¯¾ãã¦ç¤ºããã£ã¦ãããã ãã©ããããåé¡ãªãã
次ã¯nat_to_bin (bin_to_nat b)=bã¯å¿ ãããæãç«ããªãã¨èå¯ãããã£ã¦ãããã®ããããã ã£ã¦æ®éã«bin_to_nat bin_O=0ã ãã©ã2*0=0ã ããbin_to_nat (bin_S0 bin_O)=0ã¨ããªãããã§ç¡çã§ãããã ãããããããç¡é§ãªbin_S0ãé¤ããªãã¨ãããªãã
ã¨ããããã§ã次ã®åé¡ã¯normalizeã¨ããbinããbinã¸ã®é¢æ°ãå®ç¾©ãã¦ãnat_to_bin (bin_to_nat b)=normalize bã¨ãªããã®ãæ¸ãã¾ããããã£ã¦ãããã ãã©ã
æ¬é¡
ããããæ¬é¡ããã®normalizeã£ã¦ãnormalize b=nat_to_bin (bin_to_nat b)ã§å®ç¾©ãã¡ãã£ã¦ããã®ï¼ã£ã¦è©±ãããªãã¡
Definition normalize' (a : bin) : bin := nat_to_bin (bin_to_nat a).
ç¹ã«ãããç¦æ¢ãããããªæãè¦å½ãããªããã§ããã©ãã©ããªãã§ããã
ã¾ããã«æ¸ããã®ã
Fixpoint normalize (a : bin) : bin := match a with | bin_O => bin_O | bin_S1 b => bin_S1 (normalize b) | bin_S0 b => match (normalize b) with | bin_O => bin_O | bin_S0 c => (bin_S0 (bin_S0 c)) | bin_S1 c => (bin_S0 (bin_S1 c)) end end.
ã¡ãã£ã¨åã¾ã§ãbin_S1 b => bin_S1 bã¨æ¸ãã¦ããã®ã§è¨¼æãéãããããªãã£ãããã®é¢æ°ã使ã£ã証æãããããéã£ããæ±ããã©ãããabsurdã¨ãdiscriminateã¨ããªãã§ãåºæ¥ããã ãããã©â¦ã
å¾æ¸ã
ãã®è¾ºãã¯ãµã¯ãµã¯çµããããã¨æã£ã¦ããã®ã«ãããã§è©°ã¾ã£ã¡ãã£ã¦ã«ãã¼ã«ãã¼ãã¦ããã¨ããã
2013å¹´01æ18æ¥ã®ãã¤ã¼ã
@kururu_goedel: @kururu_goedel @patho_logic ãã®æ¸ãæ¹ãã誰ã«ãããããªããªãç§ã®various club guessingãã©ãã®ã¨ããããã¬ããªã³ãåç §ã
@kururu_goedel: @patho_logic Shelahãã2-completely properãã¤ä»»æã®å®æ°ãä»ãå ããªãå¼·å¶æ¡å¤§ä¸ã§properãªå¼·å¶æ³ã®iterationã¯å®æ°ãä»ãå ããªããã¨ã証æãã¦ããã®ã§ãã»ã¨ãã©ã®å¼±ãclub guessingã¯CHã¨å ±åå¯è½ã
2013-01-18 20:41:42 via TweetDeck to @patho_logic
@kururu_goedel: @patho_logic ç§ã®ç¥ãéãã§ã¯ãé£ç¶ä½ä»®èª¬ãä»®å®ããã¨ãã®å¼±ãclub guessingã¯ã»ã¨ãã©ç¬ç«ã¨ãããã¨ã§æ±ºçãã¤ãã¦ãã¾ããå¯ä¸ã¤ãã¤ã®ãMeasuringã§ãããã¯10å¹´æ¥ã®èª²é¡ã
2013-01-18 20:35:10 via TweetDeck to @patho_logic
@kururu_goedel: @mr_konn ãã®ããããã§ããï¼
2013-01-18 00:07:14 via TweetDeck to @mr_konn
2013å¹´01æ17æ¥ã®ãã¤ã¼ã
@kururu_goedel: ä»æãï¼æéåãããæ ¼éãã¦èµ¤ã¡ããã¯å¯ãªãã£ããä¸äººå¯ãã®ã§ãããããä¸äººããªãã¨ããããã¨æã£ããã®ã£ã³æ³£ããç¶ãã¦å¯ã¦ãæ¹ãèµ·ãããè ãèãã¬ã¿ã¬ã¿ã§ç²¾ç¥çã«ç²å¼ããä¸ã§å¦»ã«ã¯æãããã£ã¦ãããä»æ¹ãªããã©â¦ã
@kururu_goedel: 7人ãç»é²ãã¦ããæ¥ç¨æªæ±ºå®ã®ææ¥ãã¾ããªãã¨ããªããã¨æã£ã¦ãããã¿ãªããã¹ã±ã¸ã¥ã¼ã«å¶ç´ããã¤ããã¦éããªãä¸å¯è½ï¼ã¾ãèªåãææ¥ã«å ãã¦èµ¤ã¡ããè¦ããä¸ã®åãããã¯ãããã®æéãã¨ã£ã¦å ¥ãããã ãï¼