Vés al contingut

Llei dels gasos ideals

De la Viquipèdia, l'enciclopèdia lliure

La llei dels gasos ideals és una equació d'estat que relaciona la pressió, , el volum, , la temperatura, , i la quantitat de substància, , d'un gas ideal; un gas hipotètic les molècules del qual són totalment lliures i on no hi ha cap interacció entre elles.[1]

Aquesta llei es pot derivar de la teoria cinètica dels gasos i es basa en tres hipòtesis:[2]

  • el gas està compost d'un nombre elevat de molècules, que es mouen de manera aleatòria i obeeixen les lleis de Newton del moviment
  • el volum de les molècules és molt petit comparat amb l'espai que ocupa el gas, i és negligible
  • no hi ha cap altra força que actuï sobre les molècules que no siguin les col·lisions, que són elàstiques i de durada negligible.

Tot i que cap gas té aquestes característiques, la llei descriu de manera força precisa el comportament dels gasos reals, especialment en condicions de temperatura elevada i baixa pressió, atès que la distància entre les molècules i la seva velocitat augmenta fent més difícil la interacció entre elles. I inversament, quan el gas es troba a prop de seu punt de condensació, la llei no es compleix.[2]

L'equació d'estat que defineix un gas ideal és:[3]

On és el nombre de mols del gas, és el volum ocupat pel gas, és la pressió, la temperatura i és la constant dels gasos.

El valor de és:

La contant dels gasos està relacionada amb el nombre d'Avogadro () i la constant de Boltzmann ():[3]

Derivació empírica

[modifica]
Robert Boyle (1627-1691)

La formulació de l'equació dels gasos ideals s'inicià en un article del 1834 de l'enginyer de mines francès Émile Clapeyron (1799-1864) en el qual realitzava un estudi del cicle de Carnot.[4] En aquest article agrupà dues equacions relatives a les transformacions dels gasos:

  • L'equació de la llei de Boyle-Mariotte, que relaciona la pressió, , i el volum, , d'una determinada massa de gas en un estat inicial, amb la pressió, , i el volum, , de la mateixa massa de gas en un altre estat que s'hi arriba després de sofrir una transformació a temperatura constant o procés isotèrmic:

(1)

  • I l'equació de la llei de Charles i Gay-Lussac, que relaciona el volum, , i la temperatura absoluta, , d'una determinada quantitat de gas, amb el volum, , i la temperatura absoluta, , en un altre estat assolit mitjançant un procés isòbar, això és, a pressió constant:

(2)

Joseph Louis Gay-Lussac (1778-1850)

L'agrupació d'ambdues equacions permeté a Clapeyron obtenir una equació aplicable a qualsevol procés entre dos estats d'un mateix gas i d'una mateixa massa d'ell, sense les restriccions d'haver de mantenir una de les tres variables constant. És l'anomenada equació de Clapeyron:

(3)

Benoît Paul Émile Clapeyron (1799-1864)

La primera equació d'estat dels gasos ideals fou obtinguda pel químic rus Dmitri Mendeléiev (1834-1907) el 1874[5] on escriu l'equació dels gasos ideals amb la massa del gas, , i la seva massa molar, . Per deduir-la emprà les noves masses atòmiques, que conegué al Congrés de Karlsruhe el 1860 quan Stanislao Cannizzaro (1826-1910) explicà un nou mètode de determinar-les i aclarí el concepte de molècula i les observacions experimentals realitzades amb mostres del mateix gas, però amb masses diferents, , que demostren que:

(4)

Així mateix, elegint mostres de gasos d'igual massa , però de diferent constitució química, això és, de diferent massa molecular, , resulta que:

(5)

Agrupant ambdues equacions (4) i (5) queda:

(6)

Que hom pot escriure emprant una constant, :

(7)

Dmitri Ivanovitx Mendeléiev (1834-1907)

Reorganitzant queda l'equació que obtingué Mendeléiev, i que es coneix com a equació de Clapeyron-Mendeléiev:[6]

(8)

Per tant és una equació d'estat, ja que no implica una relació entre dos estats diferents i és vàlida per a qualsevol gas i per a qualsevol massa d'ell. Això fa que aparegui per primer cop una veritable constant, la constant dels gasos,. En posteriors articles[7][8] en determinà el valor de la constant , per a diferents gasos (hidrogen, nitrogen, oxigen, monòxid de carboni, diòxid de carboni i aire) obtenint un valor, en unitats del Sistema Tècnic d'Unitats, de 845 kp·m/kmol·K, que equivalen a 8,29482 J/mol·K, un valor només 0,24% inferior al valor actual, i comprovà que es podia tractar d'una constant universal.

El 1887 el químic holandès Jacobus van 't Hoff,[9] i el 1893 el químic alemany Walther Hermann Nernst (1864-1941) empraren l'equació dels gasos ideals en funció del nombre de mols,,[10] fent referència a un article del 1881[11] del químic alemany August Friedrich Horstmann (1842-1929) on suggeria emprar una massa de gas igual a la massa molecular, és a dir la massa de l'actual mol, ja que així la constant no depenia del gas. Escriviren, doncs, la forma actual:

(9)

Derivació teòrica

[modifica]
Portada de la Hydrodynamica (1738) de Bernoulli.

El 1738 Daniel Bernoulli (1700-1782) publicà Hydrodynamica, un treball on establí les bases de la teoria cinètica dels gasos. En aquest treball, Bernoulli plantejà l'argument, que encara s'utilitza fins avui dia, que els gasos es componen d'un gran nombre de molècules que es mouen en totes les direccions, que el seu impacte contra una superfície origina la pressió del gas que podem mesurar, i que el que experimenten en forma de temperatura és simplement l'energia cinètica del seu moviment. La teoria no fou acceptada immediatament, en part a causa que el principi de conservació de l'energia encara no s'havia establert, i no era obvi per als físics com les col·lisions entre molècules podrien ser perfectament elàstiques.[12]

El 1845 John James Waterston (1811-1883) envià a la Royal Society un article en què proposava, entre altres coses, que la pressió d'un gas es deu a l'impacte de les seves molècules contra el recipient, una idea trencadora en l'època. L'article fou rebutjat per "estúpid i indigne de ser llegit davant la Royal Society" i només fou publicat després de la mort de Waterston.[13] El 1856 August Karl Krönig (1822-1879), probablement després d'haver llegit el treball de Waterston, creà un model de gas simple, on només considerà el moviment de translació de les partícules.[14] El 1857 Rudolf Clausius (1822-1888), segons les seves pròpies paraules, independentment de Kronig, desenvolupà un model similar, però molt més sofisticat, ja que inclogué moviments moleculars rotacionals i vibracionals. En aquest mateix treball introduí el concepte de recorregut lliure mitjà d'una partícula.[15][12]

Segons la teoria cinètica la pressió,, d'un gas ve donada per:

(10)

Simulació del moviment de les molècules d'un gas ideal monoatòmic. La temperatura està relacionada amb l'energia cinètica mitjana de les molècules i la pressió amb els xocs de les molècules amb les parets.

on:

  • , és el nombre de molècules del gas.
  • , és la massa d'una molècula de gas.
  • , és la velocitat mitjana al quadrat de les molècules.
  • , és el volum del gas.[6]

Per altra banda la temperatura, , està relacionada amb l'energia cinètica mitjana, , mitjançant la fórmula:

(11)

on:

D'aquesta equació es pot aïllar i substituir en l'anterior:

(12)

Si el nombre de partícules es posa en funció del nombre d'Avogadro, això és , essent el nombre de mols, i s'agrupen les constants (nombre d'Avogadro i constant de Boltzman) en una de sola, és a dir , s'obté finalment l'equació del gas ideal:[6]

(13)

(14)

Referències

[modifica]
  1. (Gas) Gran Enciclopèdia Catalana. Volum 11. Reimpressió d'octubre de 1992. Barcelona: Gran Enciclopèdia Catalana, 1992, p. 493. ISBN 84-7739-006-1. 
  2. 2,0 2,1 «Perfect gas» (en anglès). Encyclopædia Britannica. Encyclopædia Britannica, Inc.. Arxivat de l'original el 8 d’agost 2020. [Consulta: 8 octubre 2021].
  3. 3,0 3,1 Ansermet i Brechet, 2018, p. 111.
  4. Clapeyron, E. «Mémoire sur la pissanse motrice de la chaleur». J. l'ecole polytechnique, 14, 1834, pàg. 153-190.
  5. Mendeléiev, D.I «О сжимаемости газов (Sobre la compressibilitat dels gasos)». Russian Journal of Chemical Society and the Physical Society, 6, 1874, pàg. 309–352.
  6. 6,0 6,1 6,2 6,3 Holton, G. Introdución a los Conceptos y Teorías de las Ciencias Físicas (en castellà). Barcelona: Reverté, 1989. ISBN 84-291-4323-8. 
  7. Mendeléiev, D.I. Recherches expérimentales sur l'élasticité des gaz / par D. Mendeleeff (en rus). Sant Petersburg: Nadein, 1875.  Arxivat 2021-06-19 a Wayback Machine.
  8. Mendeléiev, D.I «Mendeleef's Researches on Mariotte's Law». Nature, 15, 1877, pàg. 498-500. DOI: 10.1038/015498a0.
  9. Van' t Hoff, J «The Function of Osmotic Pressure in the Analogy between Solutions and Gases.». Zeitschrift fur physikalische Chemie, 1, 1887, pàg. 481-508. Arxivat de l'original el 2016-03-03 [Consulta: 3 febrer 2015].
  10. Nernst, W. Theoretical Chemistry: from the Standpoint of Avogadro’s Rule and Thermodynamics. MacMillan and Co., 1893, p. 41. 
  11. Horstmann, A.F «Ueber die Anwendungen des zweiten Hauptsatzes der Wärmetheorie auf chemische Erscheinungen». Berichte der deutschen chemischen Gesellschaft, 14, 1, 1881, pàg. 1242-1250.[Enllaç no actiu]
  12. 12,0 12,1 Müller, I. A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer Science & Business Media, 2007. ISBN 9783540462279. 
  13. Waterston, J.J. «On the physics of media that are composed of free and perfectly elastic molecules in a state of motion». Philosophical Transactions of the Royal Society of London A, 183, 1892, pàg. 1–79..
  14. Krönig, A «Grundzüge einer Theorie der Gase». Annalen der Physik, 99, 10, 1856, pàg. 315–322. Arxivat de l'original el 2020-10-01 [Consulta: 23 gener 2015].
  15. Clausius, R «Ueber die Art der Bewegung, welche wir Wärme nennen». Annalen der Physik, 176, 3, 1857, pàg. 353–379. Arxivat de l'original el 2020-10-31 [Consulta: 23 gener 2015].

Bibliografia

[modifica]
  • Ansermet, Jean-Philippe; Brechet, Sylvain D. Principles of Thermodynamics (en anglès). Cambridge University Press, 2018. ISBN 9781108426091.