"大学生数学基本調査"を解いてみる

http://mathsoc.jp/comm/kyoiku/chousa2011/surveyslip0955.pdf

  • 1-1 (1)× (2)â—‹ (3)×
  • 1-2 (1)â—‹ (2)× (3)×
  • 2-1 (b)â—‹ 理由: 1は奇数である。あらゆる奇数は偶数+1で表現できる。あらゆる偶数+偶数は偶数である。偶数+奇数は偶数+偶数+1となり、すなわち偶数+1であるため必ず奇数となる。
    • 1は奇数。任意の整数nにおいて、2n+1は奇数。任意の整数n,mにおいて、2つの偶数の和は、2n+2m=2(n+m)で偶数となる。任意の整数n,mにおいて、偶数と奇数の和は、2n+2m+1=2(n+m)+1で奇数となる。
  • 2-2 1. y軸に(0, -8)で交わる。 2. x軸とは(2, 0)と(4, 0)トで交わる。 3. (3, 1)で傾きが0になり、yの最大値をとる
    • y = -x^2+6x-8 = -(x-2)(x-4), dy/dx = -2x+6
  • 3.
    • 1. 定規で線分をb側に伸ばし、コンパスで2倍、3倍の点をつける:
    • 2. 2倍点をつかい、b点を通る垂線を引く:
    • 3. a点を中心に3倍点をとおる大円弧を書き、垂線と交わらせる:
    • 4. a点と垂線との各交点をつなぐ2線分を引く(2線分:線分ab=3:1):
    • 5. a点を中心にb点から小円弧を書く:
    • 6. 小円弧の上下の交点の間で線を引くと、aからabの1/3の位置で交わる垂線となる:
    • 7. 1/3点を中心にaを通る円弧を書くと、aから2/3の位置で交わる

解答例

http://mathsoc.jp/comm/kyoiku/chousa2011/answer.pdf

そもそもコンパスで平行線ってどう引くんだっけ、って思った。

  • 線上で平行の点と重ならないような垂線を引く
  • 平行線の点からコンパスで垂線上に適当に2点つける
  • 二点からそれぞれ平行線の点を通る円弧をかく
  • 2円弧が交わる2点に直線を引くとそれが平行線

問3はその前に比べ面倒な問題だと思ったけど、FAQを見ると今の中学の教科書に同じ問題があるらしい