æ©æ¢°å¦ç¿ï¼ããããããã ããè±: machine learningï¼ã¨ã¯ãçµé¨ããã®å¦ç¿ã«ããèªåã§æ¹åããã³ã³ãã¥ã¼ã¿ã¼ã¢ã«ã´ãªãºã ãããã¯ãã®ç 究é åã§[1][2]ã人工ç¥è½ã®ä¸ç¨®ã§ããã¨ã¿ãªããã¦ããã å ¸åçã«ã¯ãè¨ç·´ãã¼ã¿ããããã¯ãå¦ç¿ãã¼ã¿ãã¨å¼ã°ãããã¼ã¿ã使ã£ã¦å¦ç¿ããå¦ç¿çµæã使ã£ã¦ä½ããã®ã¿ã¹ã¯ãããªããã®ã¨ããããä¾ãã°éå»ã®ã¹ãã ã¡ã¼ã«ãè¨ç·´ãã¼ã¿ã¨ãã¦ç¨ãã¦å¦ç¿ããã¹ãã ãã£ã«ã¿ãªã³ã°ã¨ããã¿ã¹ã¯ãããªããã¨ãã£ããã®ã§ããã A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}