æ¦è¦ 主æååæ(Principal Component Analysis, PCA)ã¨ã¯ã ãã¼ã¿ã®ç¡ç¸é¢å ãã¼ã¿ã®æ¬¡å ã®åæ¸ ãè¡ãææ³ã§ãã ç°¡åã«è¨ãã¨ããã¼ã¿ãåæããããããã«åæ§æããå¯è½ãªã次å ãä¸ãããã¨ã§ãã ãªã次å ãåæ¸ããå¿ è¦ããããã¨è¨ãã¨ãæ©æ¢°å¦ç¿ãçµ±è¨ã«ããã¦ããã¼ã¿ã®æ¬¡å ã大ããããã¨èªè精度ãæªããªãã次å ã®åªãã¨ããç¾è±¡ãåé¿ããããã§ãã (2次å ã3次å ã«å¤æã§ããã¨å¯è¦åã§ãããã¨ããã¡ãªãããããã¾ãã) ä»åã¯ãPythonã使ã£ã¦ä¸»æååæã試ãã¦ã¿ããã¨æãã¾ãã 主æååæã®ä¾ ã©ã¤ãã©ãªã¨ãã¦scikit-learnããã¹ããã¼ã¿ã¨ãã¦iris datasetãç¨ãã¾ãã scikit-learnã¯Pythonã®æ©æ¢°å¦ç¿ã©ã¤ãã©ãªã§ãã主æååæãå®è£ ããã¦ãã¾ãã å°å ¥çã«ã¤ãã¦ã¯ã次ã®è¨äºããåç §ãã ããã Macã§Python
{{#tags}}- {{label}}
{{/tags}}