Pythonã§NMFããã«ã¯ï¼nimfaã¨ããããã±ã¼ã¸ã使ãã°ãããããã§ãï¼ã¨ãããã使ãã ããªãï¼é©å½ãªnumpyè¡åvecãç¨æãã¦ï¼ä»¥ä¸ã®ããã«é¢æ°ã«æãã¦ããã¾ãï¼ factor = nimfa.mf(vec, seed='random_vcol', method='nmf', rank='5', max_iter=10) res = nimfa.mf_run(factor).basis() ã¨ããããã·ã¼ãã¯ã©ã³ãã ã§ï¼ææ³ã¯ãã¼ã·ãã¯ãªnmfï¼ä½æ¬¡å
ã«åæ¸ããããrankã§æå®ãã¦ï¼ã¤ãã¬ã¼ã·ã§ã³åæ°ã決ããã°OKã§ãï¼ nmfã¯é¢é£ææ³ãå±±ã»ã©ãã£ã¦ï¼ãã£ã¨ä»¥ä¸ã®ããã«ãªãã¾ãï¼èª¬ææã¯åºæ¬çã«æ訳ã§ãï¼æ£ç´æ訳ããã£ã¦ãããèªä¿¡ã¯ãªãã®ã§ï¼ãã¡ãããå
è«æãèªã¿ã¾ããã*1ï¼ ææ³ æ¦è¦ BD ã®ãã¹ãµã³ãã©ã¼ã使ã£ããã¤ã¸ã¢ã³NMF BM ãã¤ããªã®MF ICM It
{{#tags}}- {{label}}
{{/tags}}