Connected Papers is a visual tool to help researchers and applied scientists find academic papers relevant to their field of work.

ãã¤ã¯ãã½ããæ ªå¼ä¼ç¤¾ã1986å¹´ã«ç«ã¡ä¸ããé ã«ã¯ããã«ã²ã¤ãã¯æ¥æ¬ã«å¹´2ãã3åã»ã©è¨ªåãã¦ããã¨æãã¾ããããã¤ãæç°ç©ºæ¸¯ã¸è¿ãã«ç§ãè¡ã£ã¦ããã®ã§ãããå½¼ãæ¥æ¥ããã¨ãã«ã¯åè¡ããç§æ¸ããä»ãã®äººéãç¡ãããã¤ãä¸äººã§ç©ºæ¸¯ã«å°çãã¦ãã¾ãããããããã«ããä¸äººã§ãªã ã¸ã³ãã¹ãæç°ã¨ã¯ã¹ãã¬ã¹ã«ä¹ã£ã¦ããªããããã¨ããããã«ããããªãã®ã§ã空港ã®å°çå¾ å室ã§å½¼ãå¾ ã¤ã®ã§ãããããã®å½æãã«ã使ã£ã¦ããã«ãã³ã¯ãLark製ã®å°ã¶ãã®ã¹ã¼ãã±ã¼ã¹ã¨ç®è£½ã®ãã©ãã«ç¨ã¹ã¼ãã±ã¼ã¹ã©ã¡ãã10年以ä¸ä½¿ãè¾¼ãã ãã®ã§ãå¤åé©è£½ã®ãã®ã¯ç¶ä¸ããè²ãåãããã®ã§ãªããã¨æãããã»ã©ã®å¹´å£ãã®ã§ããã¾ãããããã¼ãã¼ã大å¦ã«å ¥å¦ããã¨ããã®é©ã«ãã³ã«èº«ã®åãã®åãè©°ãã¦å¯®ã«å ¥ã£ãã®ã ããã§ããããã®å½æãæµ·å¤æ è¡ã®ã¹ã¼ãã±ã¼ã¹ã¨ããã°ããã¼ãã±ã¼ã¹ã¯ãµã ã½ãã¤ããã½ããã±ã¼ã¹ã¯Larkã¨ã決ã¾ãã§ãã£
Fortunately, itâs a brilliantly simple process to get started with. And in this article, weâll explore some of the options FAISS provides, how they work, and â most importantly â how Faiss can make our search faster. Check out the video walkthrough here: What is Faiss?Before we get started with any code, many of you will be asking â what is Faiss? Faiss is a library â developed by Facebook AI â th
Building a bare-metal Kubernetes cluster on Raspberry PiMay 19, 2021@anthonynsimon In this post Iâll be walking you step by step on how I built a bare-metal, 3-node Kubernetes cluster running on Raspberry Pis. I'll also share some tips and tricks I learned along the way, and towards the end I'll honor the classic "I run my blog on Kubernetes" meme by deploying a basic Ghost server. The already ass
Introducing QOI â the Quite OK Image Format. It losslessly compresses RGB and RGBA images to a similar size of PNG, while offering a 20x-50x speedup in compression and 3x-4x speedup in decompression. All single-threaded, no SIMD. It's also stupidly simple. tl;dr: 300 lines of C, single header, source on github, benchmark results here. I want to preface this article by saying that I have no idea wh
3ã¤ã®è¦ç¹ âï¸ FIDã®ç®åºã«å¤§ããªèª¤ããåå¨ããã âï¸ ç»åå½¢å¼ã«ãã£ã¦ãFIDã¯å½±é¿ãåãããã¨ã夿 âï¸ PILã®bicubicè£éã使ç¨ãããã¨ãæ¨å¥¨ããã On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation written by Gaurav Parmar, Richard Zhang, Jun-Yan Zhu (Submitted on 22 Apr 2021) Comments: Published on arxiv. Subjects: Computer Vision and Pattern Recognition (cs.CV); Graphics (cs.GR); Machine Learning (cs.LG) codeï¼ è¿½è¨ ä»åã®å 容ã¯ã©ã¤ãã©ãªã®V1ã§ã®å®è£ ã§ã
3å¹´ã§ããã¯ã¨ã³ãã¨ã³ã¸ãã¢ã5åã«å¢ãã¦ãç ´ç¶»ããªãã£ãã¢ã¼ããã¯ã㣠ããã¦ããããã / Software architecture that scales even with a 5x increase in backend engineers in 3 years
Next.jsã®å¯¾æé¦¬ã¨ãªããããªReactã®ãã¬ã¼ã ã¯ã¼ã¯ã§Remixã®v1.0ããªãªã¼ã¹ããã¾ããã å人çã«Remixã§ãã¡ã°ãé åãæãã¦ããã®ã¯Cloudflare Workersã§SSRãã§ããã¨ããç¹ã§ãï¼ç¾ç¶ã§ã¯Next.jsãCloudflare Workersä¸ã§SSRããã®ã¯é£ããï¼ãããããªãå¬ããã®ãã¨è¨ãã¨ãããã©ã¼ãã³ã¹ãåºãã¤ã¤ãä½ã³ã¹ãã§éç¨ã§ãã大éã®ã¢ã¯ã»ã¹ã«å¯¾ãã¦ãä½ã³ã¹ãã§ã¹ã±ã¼ã«ã§ãããã ããã§ãã ããããSSRãããå¿ è¦ããï¼ ã»ã¨ãã©ã®Webãµã¼ãã¹ã¯SSRãªãã§SPAã¨ãã¦ãã«ãããCloudflare PagesãGitHub Pagesã«éçãã¡ã¤ã«ãã®ãã¦åããã°ååã ã¨æãã¾ãã ä¾ãã°åãå æ¥ä½ã£ãå人éçºã®ãµã¼ãã¹ãReact on Cloudflare Pagesã®å®å ¨ãªSPAã§ãããSSRãå¿ è¦ãªè¦ç´ ã¯ã¾ã£ããããã¾ããã
Appleãå½å®¶ãæ¯æ´ãããµã¤ãã¼æ»æãåããã¦ã¼ã¶ã¼ã®Apple IDãã¡ã¼ã«ãiMessageãªã©ã«éç¥ãè¡ãã¨çºè¡¨ãã¦ãã¾ãã詳細ã¯ä»¥ä¸ããã ç±³Appleã¯ç¾å°æé2021å¹´11æ23æ¥ãè¤æ°ã®å½å®¶ã®æ¯æ´ãåãã¹ãã¤ã¦ã§ã¢ãPegasusããªã©ãéçºããNSO Groupãæè¨´ããã¨çºè¡¨ãã¾ããããåæã«å½å®¶ãæ¯æ´ããæ»æ(State-sponsored attacks)ã確èªãããå ´åããã®æ»æã®å¯¾è±¡ã¨ãªã£ãã¦ã¼ã¶ã¼ã«å¯¾ãéç¥ãè¡ãã¨çºè¡¨ãã¦ãã¾ãã Apple ãé ä¿¡ããè å¨ã®éç¥ã¯ãå½å®¶ãæ¯æ´ããæ»æè ã®æ¨çã«ãªã£ã¦ããã¨èããããã¦ã¼ã¶ã«ãã®æ¨ãç¥ãããæ´å©ãããã¨ãçãã¨ãã¦ãã¾ããããããæ»æã¯ãç¹å®ã®å人ããç¹å®ã®æ´»åãè¡ã£ã¦ãã人ãåå¥ã«æ¨çã¨ãã¦ãã¾ãã Apple ã®è å¨ã®éç¥ã¨å½å®¶æ¯æ´åæ»æã¸ã®å¯¾çã«ã¤ã㦠â Apple ãµãã¼ã å ¬éããããµãã¼ãæ å ±ã«ã
6. Data / Inform / Information Inform: âto convey knowledge via facts (äºå®ã«ãã£ã¦ç¥èãä¼ãã)â Data (Factã®éå) Information 鏿ã»å å·¥ãã¦ç¥èãåãåºã Value of Values (Rich Hickey) æ¥åã·ã¹ãã æ§ç¯ã«ããããã¼ã¿ã¢ããªã³ã° (åç°çäº) 7. Dataãå ´ååããã Event (ã³ã) Resource (ã¢ã) æ¥æå±æ§ããã¤ æ¥æå±æ§ããããªã éå¯¾ç§°æ§ å¯¾ç§°æ§ ããä¸æç¹ ã©ã¤ããµã¤ã¯ã«ããã 䏿ç¹ã®äºå®ã®è¨é²ãªã®ã§ã屿§ã¯å¤ãã ãã¨ã¯ãªãã ã©ã¤ããµã¤ã¯ã«ã«ã¨ããªã屿§ãå¤åã㦠ãããã¨ãããã 屿§ãå¤åãã¦ãåãã¢ãã§ãããã¨ã示 ãããIdentityãå¿ è¦ã ãã¼ã¿ã¯å¤§ã¾ãã«2種é¡ã«åå¥ã§ããã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}