Customer case studies Read stories Optimizing Pokémon GO with a Redis Enterprise cluster See more
Redisã¯å¤å½©ãªãã¼ã¿æ§é ããã¤1ã¤ã³ã¡ã¢ãªDBã§ãããæ¨ä»ã®Webã¢ããªã±ã¼ã·ã§ã³ã®ãã¼ã¿ã¹ãã¢ã®ä¸ã¤ã¨ãã¦ãåºãå©ç¨ããã¦ããã ããããä¸æ¹ã§ãæ§è½æ¹åã®ããã®ææ³ãä½ç³»çã«ã¾ã¨ããè³æãè¦å½ãããªãã¨æãã¦ããã å®éãæåã«CPUè² è·ãåé¡ã«ãªã£ãã¨ãã«ã©ããããã®ãã¨æ©ã¿ã調æ»ã¨è©¦è¡é¯èª¤ãç¹°ãè¿ããã ããã§ããã®è¨äºã§ã¯ãèªåã®çµé¨ãåºã«ãRedisãµã¼ãã®CPUè² è·å¯¾çããCPUè² è·åæ¸ããã¹ã±ã¼ã«ã¢ããããã¹ã±ã¼ã«ã¢ã¦ããã«åé¡ãããã¿ã¼ã³ã¨ãã¦ã¾ã¨ããã èæ¯ Redisã®CPUè² è·å¯¾çãã¿ã¼ã³ CPUè² è·åæ¸ multiã³ãã³ã Redisãã¤ãã©ã¤ãã³ã° Luaã¹ã¯ãªããã£ã³ã° Redisã¢ã¸ã¥ã¼ã«(夢) ã¹ã±ã¼ã«ã¢ãã ã¹ã±ã¼ã«ã¢ã¦ã åç §ç¨ã¹ã¬ã¼ã åç´åå² æ°´å¹³åå² Redis Clusterã«ããæ°´å¹³åå² ãã®ä» ã¹ã©ã¤ãè³æ ãã¨ãã åèè³æ èæ¯ R
Entrepreneur, Automotive Junkie and Founder @ Web Foundation As some of you may know, Iâm crazy about speed. So when I saw that people were happily using Predis as their choice of PHP client for Redis, I was a bit confused. Why use a client written in PHP for something that should be âfastâ like Redis? That kind of defeats the purpose - unless you donât really care about response times and scalabi
ã¡ã¢ã¡ã¢ãæ³¥èã話ã§é¢ç½ãã£ãã§ãã ã大è¦æ¨¡Redisãµã¼ã縮å°åã®æ¦ãã é§äº ç¥äºº æ° (æ ª)ã¢ã«ãã ã²ã¼ã ã®ãµã¼ããµã¤ãæ©è½éçºãã¤ã³ãã©ã®è¨è¨æ§ç¯ã»ä¿å®éç¨ Redisã¨ã¯ ã¤ã³ã¡ã¢ãªDB 5種é¡ã®ãã¼ããªã¥ã¼ã®ãã¼ã¿å ãã¡ã¤ã«æ°¸ç¶åãªãã·ã§ã³ ã·ã¹ãã ã®åé¡ç¹ EC2ãµã¼ãã20å°ã«å¯¾ãã¦ãAWSã®ElasticCache(Redis)ã64å°ãã£ã ãªã64å°ãã£ããã¨ããã¨ããªãªã¼ã¹ç´å¾ã«Redisã®è² è·åé¡ãããã8å° => 64å°ã«ãªã£ã 調æ»ããã¨keys("")ãå®è¡ãã¦ããç®æããã£ã å½ç¶ãéãããã(cache.m3.large * 64å° = ç´135ä¸å/æ) åé·åããã©ãããè¨å®ãã¡ã¤ã«ã®è¨è¼ãè¾ã ã®ã§ã縮å°åã¨åé·åã®å¯¾å¦ãããã ç¾ç¶æ´ç æ ¼ç´ããã¦ãããã¼ã¿ ãã¬ã³ãæ å ±ãã»ã¼ã«æ å ±ãã©ã³ãã³ã°æ å ± ãã¼ã®ä»¶æ° 1ãµã¼ãã«8DBã1DBãã
https://www.youtube.com/watch?v=rP9EKvWt0zo 1 comment | 0 points | by WazanovaNews â comment by Jshiike | ç´1æéå Twitterã®Yao Yuãã大è¦æ¨¡ãµã¼ãã¹ã®ãã£ãã·ã¥ã«ããã¦Redisãæ´»ç¨ããåçµã¿ã«ã¤ãã¦ç´¹ä»ãã¦ãã¾ãã 1) Redisãæ¡ç¨ãã¦ããçç± ãã£ãã·ã¥ã ãã§ãã¹ãã¬ã¼ã¸ã¨ãã¦ã¯å©ç¨ãã¦ããªãã 主ãªã¨ããã§ã¯ãTwitterã®ã¿ã¤ã ã©ã¤ã³ã§å©ç¨ãã¦ããããã¼ã ç»é¢ã§ãããã¦ã¼ã¶ç»é¢ã§ãããã¿ã¤ã ã©ã¤ã³ã¯Tweetã®ã¤ã³ããã¯ã¹ãªã®ã§ãkey/valueã¹ãã¢åã®Redisãå©ç¨ããã±ã¼ã¹ã¨ãã¦æé©ã 以åã¯memcachedã使ã£ã¦ããããåé¡ã«ãªã£ãã®ã¯ãã¿ã¤ã ã©ã¤ã³ã§ãããread/writeã¯ãï¼ã¦ã¼ã¶ãé²è¦§ãã¦ããç¯å²ã«è¿½å åæ ããã¨ãããã¨ãªã®
Redis ã«ããåæ£ããã¯Â¶ ç°ãªãããã»ã¹å士ããç¸äºã«æä»çãªæ¹æ³ã§å ±æãªã½ã¼ã¹ã«å¯¾ãã¦æä½ãå®è¡ãããã¨ããç°å¢ã«ããã¦ãåæ£ããã¯ã¯é常ã«å½¹ã«ç«ã¡ã¾ãã Redis ã使ã£ã DLM (Distributed Lock Manager) ã®å®è£ ã«ã¤ãã¦ã¯ãå¤ãã®ã©ã¤ãã©ãªãããã°ãã¹ããããã¾ããããããã©ã¤ãã©ãªãã¨ã«ç°ãªãã¢ããã¼ããã¨ããã¦ãããã¾ããã®å¤ãã¯ãããè¤éãªãã¶ã¤ã³ã¨æ¯è¼ããã¨ã·ã³ãã«ã§ããã®ã¶ãä¿è¨¼ãããå 容ãä½ãã¢ããã¼ãã¨ãªã£ã¦ãã¾ãã ãã®ãã¼ã¸ã¯ãRedis ä¸ã§åæ£ããã¯ãå®è£ ããã«ããããæ¨æºçãªã¢ã«ã´ãªãºã ãæä¾ãããã¨ãç®æããã®ã§ããç§ãã¡ã¯ãã㧠Redlock ã¨å¼ã¶ã¢ã«ã´ãªãºã ãæä¾ãã¾ãããã㯠DLM å®è£ ã®ä¸ç¨®ã§ãããè¦ããããããªãã²ã¨ã¤ã®ã¤ã³ã¹ã¿ã³ã¹ã使ãã¢ããã¼ããããå®å ¨ã§ãããã¨ç§ãã¡ã¯èãã¦ãã¾ããã³ãã¥ããã£ããã®
Developers increasingly need a variety of datastores for their projects -- no one database can serve all the needs of a modern, scalable application. For example, an e-commerce app might store its valuable transaction data in a relational database while user session information is stored in a key-value store because it changes often and needs to be accessed quickly. This is a common pattern across
Introduction & OverviewNetflix has long been a proponent of the microservices model. This model offers higher-availability, resiliency to failure and loose coupling. The downside to such an architecture is the potential for a latent user experience. Every time a customer loads up a homepage or starts to stream a movie, there are a number of microservices involved to complete that request. Most of
ç¢å£ã§ãã ã¿ãªããã¯Linuxã®tcã¨ããæ©è½ããåç¥ã§ãããããéä¿¡ãããã±ããã®å¸¯åå¶å¾¡ãè¡ããã¨ãã§ãã大å¤å¼·åãªæ©è½ã§ãã°ãªã¼ã§ãããã¤ãã®ç¨éã§ä½¿ç¨ããã¦ãã¾ãã å ·ä½çãªäºä¾ã®ä¸ã¤ã¯Redisã§ããRedisã§ã¯replicationãæ°è¦ã«éå§ããéãfailoverãçºçãmasterãåãæ¿ãã£ãé(ç¹ã«2.6ç³»)ã«ã¹ãã¢ããã¦ããå ¨ãã¼ã¿ã転éããã¾ããããã帯åå¶éããããæ©è½ããªãããããããã¯ã¼ã¯å¸¯åãå§è¿«ãã¦ãã¾ãå±éºæ§ãããã¾ããã¾ãé常ã®ã¯ã©ã¤ã¢ã³ãã¨ã®éä¿¡ã§ã大éã®ã¯ã¨ãªã«ããäºæ³ä»¥ä¸ã®å¸¯åã使ç¨ãã¦ãã¾ãå¯è½æ§ãããã¾ãããã®ãããªå ´åã«tcãç¨ãããã¨ã§Redisã®ä½¿ç¨ãã帯åãã³ã³ããã¼ã«ã§ãã¾ãã ãã®ããã«æç¨ãªtcã§ããæ®å¿µãªãã¨ã«æ¥æ¬èª/è±èªã¨ãã«ãããããã解説ã詳細ãªæ å ±ã¯å¤ãããã¾ããã ç§ã社å ã«ããã¦ä½¿ããã¦ããtcã®è¨å®ã«åé¡ã
ã©ããããã«ã¡ã¯ããããã§ããä»å¹´ãISUCONã®å£ç¯ããã£ã¦ãã¾ããããæ¨å¹´ã¯fujiwaraããã®å³è ã¨ãã¦åºé¡æ¥ãããã¾ãã¦ãä»å¹´ã¯ãã®ã¾ã¾fujiwaraçµã¨ãã¦äºé¸ã«åºå ´ãã¾ããã çµæã¯æ¢å ±ã®éãã§ãããã²ã¨ã¾ã2æ¥ç®ã§æ«å®1ä½ã®ã¹ã³ã¢ãåºãã¦ãã¾ãã67782ã§ããã§ã¯åé¡ã®ææ³ã¨ããã£ããã¨ãæ¯ãè¿ã£ã¦ããã¾ããããé·ãã®ã§ãã¸ã¡ã«èªãã ãèªãã®ã«ãã¶ã10åããããããã¾ããã ã¾ãããã¼ã ã¡ã³ãã¼ã®fujiwara, handlenameã®ããã°ãåºãããã¾ããã®ã§ãã¡ããåããã¦ãèªã¿ãã ããã #isucon 4ã«åå ãã¦äºé¸2æ¥ç®æ«å®1ä½ã«ãªãã¾ãã (@fujiwara) #isucon 4ã«fujiwaraçµã¨ãã¦åå ãã¾ãã (@handlename) åæ¥ã¾ã§ éææ¥ã®ãæ¼ã«ãã¼ã ã§ã©ã³ããã¦åæ ã確èªãfujiwaraããããä»åã¯å®è£ ãéãããªhand
Developers Summit 2014 ãPlay2/Scalaã§ãã¡ã¤ã³é§åè¨è¨ãå©ç¨ãã大è¦æ¨¡Webã¢ããªã±ã¼ã·ã§ã³ã®ã¹ã¯ã©ã éçºã®åæã
23. ä¾ãã°ãããªã³ã¼ã 2011â¼ #  ãã®ä¸ã¯ãã©ã³ã¶ã¯ã·ã§ã³å ã¨ããä»®å® try: #  ãã¬ã¤ã¤ã¼ã®ä½â¼åï¦ãæ¶è²» player.consume_̲vitality() #  ãã¬ã¤ã¤ã¼ã®çµé¨å¤ã¢ãã player.add_̲experience() except: #  ã¨ã©ã¼èµ·ãããDBããã¼ã«ãã㯠transaction.rollback() else: #  åé¡ãªããã°DBæ´ï¤æ°ãçµé¨å¤ãå¢ããã transaction.commit() ä½åâKVS çµé¨å¤âDB â»å®éã®ã³ã¼ãã¨ã¯ç°ãªãã¾ã 24. ä¾ãã°ãããªã³ã¼ã 2011â¼ #  ãã®ä¸ã¯ãã©ã³ã¶ã¯ã·ã§ã³å ã¨ããä»®å® try: #  ãã¬ã¤ã¤ã¼ã®ä½â¼åï¦ãæ¶è²» player.consume_̲vitality() #  ãã¬ã¤ã¤ã¼ã®çµé¨å¤ã¢ãã player.add_̲experience() excep
« Sponsored Post: Netflix, Logentries, Host Color, Booking, Apple, ScaleOut, MongoDB, BlueStripe, AiScaler, Aerospike, LogicMonitor, AppDynamics, ManageEngine, Site24x7 | Main | Stuff The Internet Says On Scalability For January 3rd, 2014 » This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams. HipChat started in an unusual
CTOã®æ¤åã¢ããã§ãã ä»åã¯ãPairyã®ãã£ãããã¼ã¿ãå ¨ã¦RedisããAmazon DynamoDBã«ç§»è¡ãã話ããããã¨æãã¾ãã æã ã 2012å¹´6æã« ã«ããã«å°ç¨ã¢ã㪠Pairy ããªãªã¼ã¹ããæã«ã¯ã ãã¼ã¿ãã¼ã¹ã¯ MySQL 㨠Redis ã®ä¸¡æ¹ãå©ç¨ããã¨ããã§å§ãã¾ããã Redis ã®å½¹å²ã¯ï¼ 1. MySQLã¬ã¹ãã³ã¹ã®ãã£ãã·ã¥ 2. ããã·ã¥éç¥çã®ãã¥ã¼ 3. ãã£ããã®ãã¼ã¿ãå ¨ä¿ç®¡ ãµã¼ãã¹ãã¼ã³ãç´å¾ã¯ã¾ã Appãµã¼ãã¼(EC2)ï¼å°ã¨ãMySQL & Redisã両æ¹èµ°ããã¦ã DBãµã¼ãã¼(EC2)ï¼å°ã§ååã ã¨ããå¤æã§ããã°ããã¯ãããªæ§æã§ãã£ã¦ã¾ãããï¼S3ãªã©ã¯çç¥ï¼ ãããããããµã¼ãã¹ãæé·ãã¦ããã¨ãã¡ãã MySQL & Redis ãï¼å°ã§ã¾ããªãã®ã¯ããããªããMySQL 㨠Redis ãå¥ã ã®EC2ã¤ã³ã¹ã¿ã³
Vedis is an embeddable datastore C library built with over 70 commands similar in concept to Redis but without the networking layer since Vedis run in the same process of the host application. Unlike most other datastores (i.e. memcache, Redis), Vedis does not have a separate server process. Vedis reads and writes directly to ordinary disk files. A complete database with multiple collections, is c
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}