2013å¹´6æ17æ¥/18æ¥/19æ¥ãæ¼ã¤ã³ã¿ã¼ãã·ã§ãã«ã»ãã¶ã¤ã³ã»ãªã¨ã¾ã³ã»ã³ã¿ã¼ 主å¬ï¼ãã¤ã¤ã¢ã³ã社 / Dï¼ï¼®æ©æ§ ãã¦ã©ã³ãå¯è¦åã¡ã½ãããã¯ã人éã®æ·±å±¤å¿çã«ãã欲æ±ãæ¬è½ãå¯è¦åããã²ã¼ã ãã¶ã¤ã³çè«ããçã¾ããã誰ã§ãç¿å¾ã§ããä¸è½ã®çºæ³æ³ã§ãã ãã®ã¡ã½ãããä½é¨ãã人ã¯ããï½ãããããï½ãã¦ãã¾ããã¨ãã£ãã人éãç¡æèã®ãã¡ã«ç§ããåæ©ããããã¯äººéãæåã«ãããã¾ã§ã®ããã»ã¹ãå¯è¦åãããã¨ãã§ããããã«ãªãããã®éæã¸ã®éçã®ãã¶ã¤ã³ããéãæã¨åãæã®ã¨ã³ã²ã¼ã¸ã¡ã³ãï¼çµæåï¼ãé«ããããã®å¤ãã®ã¢ã¤ãã¢ãå¾ããã¨ã«ãªãã§ãããã ä¸ççã²ã¼ã ãã¶ã¤ãã¼ã§ãããããã®ãã¦ã©ã³ãå¯è¦åã¡ã½ããããéçºããæ°´å£å²ä¹æ°ã«ããâªWantsâ«ã¯ã¼ã¯ã·ã§ããã¯ãã²ã¼ããã£ã±ã¼ã·ã§ã³ã®è¦ç´ ãå·§ã¿ã«åãå ¥ããªãããç¾ä»£ã®ãã¸ãã¹ãã¯ãªã¨ã¤ãã£ãã«ç«ã¡ã¯ã ããå¤æ§ãªé£é¡ã解決ã§
A beginners guide to using Python for performance computing A comparison of weave with NumPy, Pyrex, Psyco, Fortran (77 and 90) and C++ for solving Laplace's equation. This article was originally written by Prabhu Ramachandran. laplace.py is the complete Python code discussed below. The source tarball ( perfpy_2.tgz ) contains in addition the Fortran code, the pure C++ code, the Pyrex sources and
This tutorial is unfinished. The original authors were not NumPy experts nor native English speakers so it needs reviewing. Please do not hesitate to click the edit button. You will need to create a User Account first. Quick Tour NumPy is a Python library for working with multidimensional arrays. The main data type is an array. An array is a set of elements, all of the same type, indexed by a vec
ãµã¼ãã¹çµäºã®ãç¥ãã ãã¤ãYahoo! JAPANã®ãµã¼ãã¹ããå©ç¨ããã ãèª ã«ãããã¨ããããã¾ãã ã客æ§ãã¢ã¯ã»ã¹ããããµã¼ãã¹ã¯æ¬æ¥ã¾ã§ã«ãµã¼ãã¹ãçµäºãããã¾ããã ä»å¾ã¨ãYahoo! JAPANã®ãµã¼ãã¹ããæ顧ãã ããã¾ãããããããããé¡ããããã¾ãã
é åï¼ç§å¦æè¡è¨ç®ã®åºæ¬çãªéå · 並ãã é¢æ£çãªãã¼ã¿ ã®é »ç¹ãªæä½ï¼ å®é¨ãã·ãã¥ã¬ã¼ã·ã§ã³ã§ã®é¢æ£åãããæé 測å®æ©å¨ã«è¨é²ãããä¿¡å· ç»åã®ãã¯ã»ã« Numpy ã¢ã¸ã¥ã¼ã«ã¯ä»¥ä¸ãå¯è½ã«ãã¾ã. ä¸ã®ãããªãã¼ã¿ã®éã¾ãã®ä½æã1度ã§ãã¾ãã ãã¼ã¿é åã®ãããå¦çãå®ç¾ï¼è¦ç´ ã«å¯¾ããã«ã¼ãã¯ä¸è¦ï¼ ãã¼ã¿é å := numpy.ndarray >>> import numpy as np >>> a = np.array([0, 1, 2]) >>> a array([0, 1, 2]) >>> print a [0 1 2] >>> b = np.array([[0., 1.], [2., 3.]]) >>> b array([[ 0., 1.], [ 2., 3.]])
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}