
ãµã¼ãã¹çµäºã®ãç¥ãã NAVERã¾ã¨ãã¯2020å¹´9æ30æ¥ããã¡ã¾ãã¦ãµã¼ãã¹çµäºãããã¾ããã ç´11å¹´éãNAVERã¾ã¨ãããå©ç¨ã»ãæ顧ããã ãèª ã«ãããã¨ããããã¾ããã
å¯ãæ¥ã¯å¸å£ããã©ã³ã±ããã«ããã¾ã£ã¦ã´ãã´ãããããã®ã§ããããããªã¨ãå½¹ç«ã¡ãããªã®ããRumplãã§ããæ¬æ ¼çãªã¢ã¦ããã¢ç¨ã®ã¸ã£ã±ãããå¯è¢ã«ä½¿ç¨ããã¦ããç´ æã使ç¨ãããã¨ã§ãèä¹ æ§ãæ¥æ°´æ§ã«åªãã¦ãããæèå¹æãã«ãã移ãã«ãå¼·ããªã£ã¦ãããã«æ´æ¿¯ãä¹¾ç¥æ©ã使ãã¦ãã¾ãã¨ããä¸è½ãã©ã³ã±ããã«ãªã£ã¦ãã¾ãã Rumpl - The World's Best Blanket by Wylie Robinson and Nick Polinko â Kickstarter http://www.kickstarter.com/projects/gorumpl/rumpl-the-worlds-best-blanket ãããRumplã家ã®ä¸ã ãã§ãªãã¢ã¦ããã¢ã§ã使ãããã©ã³ã±ããã§ãã ã«ã©ã¼ã¯3è²å±éã§ãããã¯Deep Water(深層水) Fog(é§) Seafoam(æµ·ã®
The IEEE International Conference on Data Mining series (ICDM) has established itself as the world's premier research conference in data mining. It provides an international forum for presentation of original research results, as well as exchange and dissemination of innovative, practical development experiences. The conference covers all aspects of data mining, including algorithms, software and
å°ãåã«åæã®ããã«ç±³å½ã§æ»å¨ãã¦ããã¨ãã®ãã¨ã ããã®æ¥ã¯äºå®ããªããæ»å¨ãã¦ããåäººå® ã§ã¼ãã£ã¨éããã¦ããã ããLEGO ãã¤ã³ãã¹ãã¼ã EV3ãã®ç»åãã»ãã ãå人ã®å®¶ã«ã¯å°å¦çã®æ¯åããããå½¼ã¯åå¾ã«å¦æ ¡ããæ»ã£ã¦ããã¨ãããããã¨å®¿é¡ãçµããããããã«ãã¬ãã²ã¼ã ãå§ãããæéãæã¦ä½ãã¦ããçè ã¯ãå½¼ãéã¶ã²ã¼ã ãçºãã¦ããã âãã¬ãã²ã¼ã ã§ã人æ°ã®LEGO å½¼ãããã£ã¦ããã²ã¼ã ã¯ããã³ãã¼ã¯ã«æ¬ç¤¾ãç½®ãLEGOã®ãã¬ãã²ã¼ã ãã¬ã´ã»ãã¼ãã«ã»ã¹ã¼ãã¼ã»ãã¼ãã¼ãºãã ã£ããLEGOã¨ããã°ãããã¯ãçµã¿ç«ã¦ãããã¡ãã¨ãããããã®èªèãããªãã£ãçè ã¯ãLEGOã«ããã¸ã¿ã«åã®æ³¢ãæ¥ã¦ããã®ãã¨å¦ã«æå¿ããã®ãè¦ãã¦ããããããªãµãã«ä¹ ãã¶ãã«LEGOã®åå¨ãæãåºããã®ã ã£ãã ããã¦æè¿ãLEGOã«é¢ãããã¥ã¼ã¹ãç®ã«ããããããã¯ç©å ·ã¡ã¼ã«ã¼ã®æ ãè¶ãã
æ¥æ¬ãã¤ã¯ãã½ãããªã©æè²ã®ITåãæ¯æ´ãã45社ã§æ§æãããWindows ã¯ã©ã¹ã«ã¼ã åè°ä¼ãã¨ä½è³çæè²å§å¡ä¼ã¯12æ10æ¥ãå¦æ ¡æè²ã®ICTåã«é¢ããå ±åç 究ãå§ããã¨çºè¡¨ãããåçã§ã¯æ¥æ¥ããçç«é«æ ¡çã«1人1å°ã®ã¿ãã¬ãããå°å ¥ããè¨ç»ã1人1å°ãåæã¨ããã¤ã³ãã©æ§ç¯ããæ師ã«ããææä½æãã»ãã¥ãªãã£å¯¾çãªã©ã«ã¤ãã¦å ±åæ¸ãã¾ã¨ããæè²é¢ä¿è ã«åºãå ¬éããäºå®ã ã åçã®ã1人1å°ã¿ãã¬ãããå°å ¥è¨ç»ã¯9æã«çºè¡¨ããããããã§ã話é¡ã«ãªã£ããè¨ç»ã§ã¯æ¥å¹´4æãããçå ã®å ¨çç«é«æ ¡ã«1人1å°ã®Windows 8 Pro ã¿ãã¬ãããå°å ¥ã2011å¹´ããçå ã§å®æ½ãã¦ããå®è¨¼ç 究ãè¸ã¾ããé»åé»æ¿ãé»åæç§æ¸ãå人ç¨å¦ç¿ç¨PCãªã©ãå ¨æç§ã§æ´»ç¨ã§ããä½å¶ãç®æãã 調æ»ç 究ã§ã¯ãï¼1ï¼1人1å°ç°å¢ã«ããå ´åã®ã¢ã«ã¦ã³ãã端æ«ã®ç®¡çããããã¯ã¼ã¯ç°å¢ãªã©å¦æç°å¢ä¸ã«ãããé©åãªã¤
ãããã«ãªã°ã©ãã£ãã¯ãã¶ã¤ã³ã§ã¨ãã·ã£ã¼çä¸ç観ãæãããããºã«ã¢ããã³ãã£ã¼ãMonument Valleyãã®ææ°ãã¬ã¤ã©ã¼æ åãå ¬éããã¾ããã ãMonument Valleyããå¶ä½ãã¦ããã®ã¯éå»ã«ãWhale TrailããBlip Blupãã¨è¨ã£ãã¢ãã¤ã«ã¬ã¸ã§ããç¨ã®ã²ã¼ã ããªãªã¼ã¹ãã¦ããè±å½ã®ã¤ã³ãã£ã¼ãããããã¼ãustwo gamesãä»åå ¬éããããã¬ã¤ã©ã¼æ åã§ã¯ããªãã¯ã¢ã¼ãã®ãããªä¸æè°ãªä¸ç観ãæããã¦ãã¾ããæ§ã ãªã®ããã¯ãä»è¾¼ã¾ãã¦ããã¹ãã¼ã¸ã§ãã¬ã¤ã¤ã¼ãç®çå°ã¸ã¨å°ãã¦ããããºã«ã¢ããã³ãã£ã¼ã®ããã§ããæµ·å¤ã®ã¤ã³ãã£ã¼ã²ã¼ã ãã¡ã³ã®éã§ããFezãã¨ã¨ãã·ã£ã¼ã®é¨ãçµµãèåãããããªã²ã¼ã ãã¶ã¤ã³ã話é¡ã«ãªã£ã¦ãã¾ãã 対å¿æ©ç¨®ã¯iPadãiPhoneãªã©ãå§ãã¨ããiOSã¬ã¸ã§ããã®ã»ããAndroidããã®ä»ã¢ãã¤ã«ã¬ã¸ã§ããã§ã®ãªãªã¼
2013-12-07 ä¸åº¦ã¯èªãã§ããããããããå°èª¬ï¼ï¼ï¼é¸ èªæ¸ æ¥æ¬æå¦ æ°¸é ã®0 (è¬è«ç¤¾æ庫)ä½è : ç¾ç°å°æ¨¹åºç社/ã¡ã¼ã«ã¼: è¬è«ç¤¾çºå£²æ¥: 2009/07/15ã¡ãã£ã¢: æåº«è³¼å ¥: 39人 ã¯ãªãã¯: 275åãã®ååãå«ãããã° (289件) ãè¦ããå¨ã«ä¼ãã¾ã§ã¯æ»ããªãã妻ã¨ã®ç´æãå®ãããã«ããããè¨ãç¶ããç·ã¯ããªãèªãé¶æ¦ã«ä¹ãå½ãè½ã¨ããã®ããçµæ¦ããï¼ï¼å¹´ç®ã®å¤ãå¥ å¤ªéã¯æ»ãã ç¥ç¶ã®ç涯ã調ã¹ã¦ããã天æã ãèç è ãæ³åã¨éã人ç©åã«æ¸æãã¤ã¤ããä¸ã¤ã®è¬ãæµ®ããã§ãããè¨æ¶ã®æçãæãæãæããã«ãªãçå®ã¨ã¯ãæ¶ãæµããã«ã¯ããããªããç·ã®çµã家æã®çµã ã¤ã³ã»ã¶ã»ãã¼ã«: 1 (ãã¯ã¿ã¼ä¼è¯é¨)ä½è : 奥ç°è±æåºç社/ã¡ã¼ã«ã¼: æèæ¥ç§çºå£²æ¥: 2012/09/20ã¡ãã£ã¢: Kindleçãã®ååãå«ãããã° (1件) ãè¦ããããã£ããã¼ãã
//---ã¯ããã«--- ããã«ã¡ã¯ãMachine Learning Advent Calendar 2013ã®11æ¥ç®ãæ å½ãããã¨ã«ãªãã¾ãã@vaaaaanquishã§ããä»åã¯å¤§å¦ã§ç 究ãã¦ããé²æã¨ãã¦stochastic average gradient(SAG)ã«ã¤ãã¦ã¾ã¨ãã¦ããããã¨æãã¾ãããå年度ã誰ãããã£ã¦ããããªï½¥ï½¥ï½¥ãã¨æã£ãæ¹ã¯ãã£ã¨è¨æ¶éãã§ãããããããé¡ããã¾ãã //---SAG--- SAGã¯NIPS2012ã§çºè¡¨*1ããããªã³ã©ã¤ã³ã¢ã«ã´ãªãºã æé©åææ³ã®ä¸ã¤ã§ãããã®åã®éãæ´æ°æã«ç¢ºççå¾é ã®ãAverageããåãã¢ã«ã´ãªãºã ã§ãããã®ãããªå¹³ååãããã¢ã«ã´ãªãºã ã¯ãaveraged stochastic gradient descent*2ãSample Average Approximation*3ã®ããã«æããæ°å¤ãã®ç 究ãè¡ãã
2013å¹´12æ10æ¥ ãæè¸ããã®ãã¹ããªã¼ããããï¼2013å¹´åä½ãã¹ã20çºè¡¨ï¼ Tweet 28ã³ã¡ã³ã ï½2013å¹´12æ10æ¥ 11:30ï½æ¸ç±ã»èªæ¸ï½è¶£å³ã»èå³ï½Editã¿ã° ï¼ãã¹ããªã¼å°èª¬ãã®æ¬ãããã çºè¡¨ï¼ããã®ãã¹ããªã¼ããããï¼2014å¹´çã ãå½å ç·¨ã 第1ä½Â  ãããã¯ã¹ã»ãã·ã³ã  æ³æ綸太é  è§å·æ¸åº 第2ä½Â  ãæå ´ã  é·å²¡å¼æ¨¹Â  å°å¦é¤¨ 第3ä½Â  ããã©ãã¯ã©ã¤ãã¼ã  æ±å±±å½°è¯Â  æ°æ½®ç¤¾ 第4ä½Â  ãã¢ãªã¹æ®ºãã  å°ææ³°ä¸Â  æ±äº¬åµå 社 第5ä½Â  ãæ»ç¥ã®æµ®åã  ä¼å幸太é  æèæ¥ç§ 第6ä½Â  ããªãã¼ãµã¤ãã»ãã«ãã¬ã³ã  æ¢å´åªÂ  æ±äº¬åµå 社 第7ä½Â  ããªã«ã¼ã·ãã«ã  米澤ç©ä¿¡Â  æ°æ½®ç¤¾ 第8ä½Â  ãæ¤å¯å´ã®ç½ªäººã  é«äºè©ä»Â  æèæ¥ç§ 第9ä½Â  ãæç± ã®æµ·ã  島ç°èå¸Â  è¬è«ç¤¾ 第10ä½Â  ããã¹ãã»ã±ã¢ã  èçä¸é¡Â  å æ
æ±äº¬ã§ããããç´ è¶ã飲ã¿ãããã©ãã©ã®åºã«è¡ãã°ãããåãããªãï¼ ãããªããªãã®ããã«ãã絶対ã«è¡ã£ã¦ããããæ±äº¬ã®ç´ è¶å°éåºãã7ã¤ããã¯ã¢ããã é½å ã®ç´ è¶åºå·¡ãã®åèã«ã©ããã ï¼â»2020å¹´1æç¾å¨ãéåºãã¦ããæãããã¾ãï¼ âã¸ã¼ã¯ã¬ãã»ãã£ã¼ã«ã¼ã ï¼éåºï¼ ç´ è¶å¥½ããªãç¥ããªã人ã¯ããªãåºã ããããã¯å£ç¯ãã¨ï¼æãã¨ï¼ï¼ã«å¤ããç´ è¶ã使ã£ãæ¬æ ¼çãªãã¶ã¼ãã ç¾å¨ãå祥寺åºã§ã¯ãææ©ã¬ã¢ã³ã¨ãã«ã®ãªã®æ¥ä¸çªã®ããã§ããã¡ãã¥ã¼ã«åºã¦ããã ç´ è¶ãããããã ç§ããã¸ã¼ã¯ã¬ãã«è¡ã£ãã¨ãã®ã¬ãã¼ãã¯ãã¡ãã é£ã¹ãã°ã®ã¬ãéã¯ãã¡ãï¼ã¬ãéï¼ãã¬ãéï¼ãã¬ãéï¼ï¼ã ã¸ã¼ã¯ã¬ãã®ãµã¤ã âãã£ã¼ãã¦ã¹ã¿ã«ã 1974å¹´ã«æ±äº¬ã§åãã¦ç´ è¶åºãéæ¥ãããç´ è¶å°éåºã®èèã ç´ è¶å¥½ããªãå¿ ããå§ãããã¨æãããã å£ç¯ã®ç´ è¶ããããããã©ãã¢ã¬ã³ã¸ãã£ã¼ãããããã ç§ãããã£ã¼
ãããããæå³Deep Learningï¼Recurrent Neural Network Language Modelã®è©± [MLAC2013_9æ¥ç®] ãã®æ稿㯠Machine Learning Advent Calendar 2013 ã®9æ¥ç®ã®è¨äºã§ãï¼ æ¬æ¥ã¯ï¼Neural Network(NN)ãå©ç¨ããLanguage Model(LM)ï¼ã¤ã¾ãNeural Network Language Model(NNLM)ã®ä¸ç¨®ã§ããï¼ Recurrent Neural Network(RNN)ã使ã£ãRecurrent Neural Network Language Model(RNNLM)ã«ã¤ãã¦èª¬æãã¾ãï¼ RNNLMã«è¡ãåç½®ãã¨ãã¦ãã£ããããã¤ãç¨æããã®ã§ï¼ç¥ã£ã¦ãããªäººã¯å ã¸é²ãã§ãã ããï¼ åç½®ããå ¥ãã¦ãããã¡ã«é·ããªãããã...ï¼ ãããï¼ããããNNã®èª¬æ
This copy is for your personal, non-commercial use only. Distribution and use of this material are governed by our Subscriber Agreement and by copyright law. For non-personal use or to order multiple copies, please contact Dow Jones Reprints at 1-800-843-0008 or visit www.djreprints.com. http://jp.wsj.com/article/SB10001424052702304468904579249543399021878.html
ã¹ã¯ã¦ã§ã¢ã»ã¨ããã¯ã¹ããã12æ5æ¥ã«çºå£²ããã3DSç¨RPGããã¬ã¤ããªã¼ããã©ã«ã ãã©ã¼ã¶ã»ã·ã¼ã¯ã¦ã§ã«ãã®ç¹éä¼ç»ã ä»åã¯ãåç·¨ã®è¨äºã«å¼ãç¶ããæ¬ä½ã®ãããã¥ã¼ãµã¼ã»æµ éæºä¹ããã¨ãæ¥æ¬ãã¡ã«ã³ã ã®ä»£è¡¨åç· å½¹ç¤¾é·ã§ãããè»è·¡ãã·ãªã¼ãºã®ãããã¥ã¼ãµã¼ã§ãããè¿è¤å£æ´ããããã³ã³ã»ãã·ã§ã³ãã·ãªã¼ãºãææããã¹ãã¤ã¯ã»ãã¥ã³ã½ããã®ãããã¥ã¼ãµã¼ã»é½è¤ç¥ä¸éããã«ããç¹å¥é¼è«ããå±ããã¾ããï¼é¼è«æä¸ã¯æ¬ç§°ç¥ï¼ é¼è«å¾ç·¨ã¨ãªãä»åã¯ãDLCã«ã¤ãã¦ã®è©±ãç®åãã«ãããããã®RPGã®å¨ãæ¹ãå°æ¥ã¯ãªã¨ã¤ã¿ã¼ãç®æã人ã«åãã¦ã®ã¢ããã¤ã¹ãªã©ã話ããã ãã¾ãããåå以ä¸ã«èå³æ·±ã話ãæºè¼ãªã®ã§ããã²æå¾ã¾ã§ã覧ãã ããï¼ ââæ¥æ¬ã®RPGã®éå»ã»ç¾å¨ã»æªæ¥âã¯ãªã¨ã¤ã¿ã¼ç¹å¥é¼è«ã»åç·¨ããèªã â 追å 課éã¯ãããã³ã°ã®ããããã§ãã æµ éï¼ãéã使ããã¨ã£ã¦æ¬æ¥æ¥½ãããã¨ã ã¨æããã§
ãµã¼ãã¹çµäºã®ãç¥ãã NAVERã¾ã¨ãã¯2020å¹´9æ30æ¥ããã¡ã¾ãã¦ãµã¼ãã¹çµäºãããã¾ããã ç´11å¹´éãNAVERã¾ã¨ãããå©ç¨ã»ãæ顧ããã ãèª ã«ãããã¨ããããã¾ããã
ãµã¼ãã¹çµäºã®ãç¥ãã SankeiBizã¯ã2022å¹´12æ26æ¥ããã¡ã¾ãã¦ãµã¼ãã¹ãçµäºããã¦ããã ãã¾ãããé·ããã®ãæèªãèª ã«ãããã¨ããããã¾ããã ç£çµãã¸ã¿ã«ããéãããçµæ¸ãã¥ã¼ã¹ã¯ãiza! çµæ¸ãã¥ã¼ã¹ãã§ã楽ãã¿ãã ããã ãã®ãã¼ã¸ã¯5ç§å¾ã«ãiza!çµæ¸ãã¥ã¼ã¹ãï¼https://www.iza.ne.jp/economy/ï¼ã«è»¢éããã¾ãã ãã¼ã¸ãåãæ¿ãããªãå ´åã¯ä»¥ä¸ã®ãã¿ã³ãããiza! çµæ¸ãã¥ã¼ã¹ãã¸ç§»åããé¡ããã¾ãã iza! çµæ¸ãã¥ã¼ã¹ã¸
ãµã¼ãã¹çµäºã®ãç¥ãã SankeiBizã¯ã2022å¹´12æ26æ¥ããã¡ã¾ãã¦ãµã¼ãã¹ãçµäºããã¦ããã ãã¾ãããé·ããã®ãæèªãèª ã«ãããã¨ããããã¾ããã ç£çµãã¸ã¿ã«ããéãããçµæ¸ãã¥ã¼ã¹ã¯ãiza! çµæ¸ãã¥ã¼ã¹ãã§ã楽ãã¿ãã ããã ãã®ãã¼ã¸ã¯5ç§å¾ã«ãiza!çµæ¸ãã¥ã¼ã¹ãï¼https://www.iza.ne.jp/economy/ï¼ã«è»¢éããã¾ãã ãã¼ã¸ãåãæ¿ãããªãå ´åã¯ä»¥ä¸ã®ãã¿ã³ãããiza! çµæ¸ãã¥ã¼ã¹ãã¸ç§»åããé¡ããã¾ãã iza! çµæ¸ãã¥ã¼ã¹ã¸
ç®ä¸ãææã§çµ¶è³çä¸ä¸ã§ããã¾ãããããã½ããã¯ã§å¤§å¤ãªãã¨ãèµ·ãã¦ããã¾ãã ããã½ããã¯ããã«ã¹ã±ã¢äºæ¥ã®å ¨æ ªã1650ååã§ï¼«ï¼«ï¼²ã«å£²å´ http://jp.reuters.com/article/topNews/idJPTYE98Q06O20130927 ãã¿èªä½ã¯ä»å¹´9æã«çºè¡¨ããã代ç©ã§ã¯ããã¾ããããã®ããã½ããã¯ã®ãã«ã¹ã±ã¢äºæ¥ããã¨ãã¨ã¯ä¸æ´é»æ©ã®ãã¤ãªã¡ãã£ã«äºæ¥é¨ã§ããã¾ãã¦ãããã®äºæ¥é¨ã®ä¸ã«å°è¦æ¨¡å»çæ³äººã診çæãªã©ãä¸å¿ã«550ä¸äººã»ã©ã®æ¥æ¬äººã®å»çæ å ±ãåãæ±ãé»åã«ã«ãé¢é£äºæ¥ãéç¨ãã¦ãã¾ãã ãã®é»åã«ã«ããæçµçã«KKRã®æã«æ¸¡ãã¾ãã¨ã20ï¼ ã®æ ªå¼ãå¼ãç¶ãããã½ããã¯ãæ¡ãã¨ã¯ãã第ä¸å½è³æ¬ã®ä¼æ¥ã¸ã®è²æ¸¡ãå æ¬çãªæ¥åææºããã次第ãæ¥æ¬äººã®å»çæ å ±ãæµ·å¤ã«æ¼ããªãæµåºããã¨ããé¨ãã«ç´çµããã¨ãããã¨ã§ããããã«ããã¯ã¾ããã ããã¨ãããã¨ã§ãã
2013å¹´æå¼·ã®é³æ¥½ãã¬ã¼ã¤ã¼ï½¢AK120 TITANï½£ã¯æ大容é256GBï¼ãã¤ã¬ã¾é³æºè´ãæ¾é¡ï¼2013.12.11 12:00 æ¦è è¯å¤ª ãå¤æ®µãã¨ã³ããã§14ä¸9800åï¼ å²ä¸æ大ï¼ç©ºå絶å¾ï¼å代æªèã§çå¿«ç¡æ¯ï¼ãã®ä»ããã¨ããããè³è³ã®4æåçèªã®åµãåãã¦ä»ããã«ï½¢AK120 TITANï½£ï¼ ãã¼ã¹ã¢ãã«ã®ï½¢AK120ï½£ãã¾ãããããã§ããå·¦å³ãã£ã³ãã«ã«ããããç¬ç«é§åã®DACãããã使ããã¯ãã¹ãã¼ã¯ãå¾¹åºçã«æé¤ãå³ï¼å·¦ï¼ã¨é³ããã£ã¡ãåé¢ããã»ãã¬ã¼ã·ã§ã³ã®è¯ãã¯ãå¾æ¥ã®ãã¼ã¿ãã«ãã¬ã¼ã¤ã¼ã«ã¯ãªãã£ããã®ã§ããã ãã½ã³ã³ç¨USB DACã¨ãã¦ã使ãããããªãã·ã§ã³ãç¨æããã°iPhoneã¨ã®ãã¸ã¿ã«æ¥ç¶ã«ã対å¿ãé«åä½ãªããããã©ã³ã¢ã³ãã¨ãã¦ã使ãã¡ããã¾ãã 192kHzï¼32bitã®PCMã2.8MHzã®DSDã«ã¾ã§å¯¾å¿ããã¥ã¢ã«microSDã¹ããããæã¡
ãå±±æ¬ç¥å¼ãæ³å¾ã§å®ããããå´åæéã®è¦å¶ãé©ç¨é¤å¤ã¨ããåãæ¹ã®æè¨ãï¼ï¼æ¥ãæ¿åºã®ç£æ¥ç«¶äºåä¼è°ã®åç§ä¼ã«ç¤ºããããã¾ãã¯ãå¹´åï¼åä¸åè¶ ã®å´åè ã«éããæ¥æ¥ä»¥éãä¸é¨ã®å°åãä¼æ¥ã§è©¦é¨å°å ¥ãç®æãæ§æ³ã ãæ¥ç§ããã©ã«çµæãæ¤è¨¼ããå ¨å½å±éãé²ãããèãã ãã第ï¼æ¬¡å®åå é£ã§å°å ¥ãæ¤è¨ããããæ®æ¥ä»£ã¼ãã®åãæ¹ãã¨æ¹å¤ãããããã¯ã¤ãã«ã©ã¼ã»ã¨ã°ã¼ã³ãã·ã§ã³ãã¨åããããªä»çµã¿ã ãåä¼è°ã®éç¨ã»äººæåç§ä¼ã®é·è°·å·éå²ï¼ããã¡ãï¼ä¸»æ»ï¼æ¦ç°è¬åå·¥æ¥ç¤¾é·ï¼ããæ¥æ¬åæ°è£éå´åå¶ãã¨ãã¦ææ¡ãæå ã«ç£æ¥ç«¶äºåä¼è°ã¨ãã¦èããã¾ã¨ããæ¿åºã«å°å ¥ãä¿ãããæè¨ã¯ãå´åè ã®ä¸ã«ã¯ãææãæéã§æ¸¬ãããè¦å¶ã«ãªãã¾ãªãå人ããããã¨ææãå´åæéã¨è³éãåãé¢ããä¼æ¥å´ã«ã¨ã£ã¦ã¯ãå´åè ãæ·±å¤ãä¼æ¥ã«åãã¦ãå´ååºæºæ³ã義åã¥ããå²å¢è³éãæããªãã¦ãããã対象ã¯ãèªåã§åãæéã決ããããå°éè·ã
æç¥çè±ç°å¸ã®ãé馬山å¥é¢å¼æµ(ãããã)寺ãå ä½è·ãè®å°¾åæ´æ°ï¼ï¼ï¼ï¼ãï¼ï¼ï¼ï¼å¹´ã¾ã§ã®ï¼å¹´éã寺ã®åå ¥ããç´ï¼åï¼ï¼ï¼ï¼ä¸åãé«ç´è æè¨ã®è³¼å ¥ã«å ã¦ã¦ããã¨ãã¦ã寺ãéå¶ããå®ææ³äººãåå¤å±å½ç¨å±ããæºæ³æå¾ç¨ã®å¾´åæ¼ããææããããã¨ãåãã£ãã ãå¾´ç¨é¡ã¯éå ç®ç¨ãå«ãã¦ç´ï¼ï¼ï¼ï¼ä¸åã§ãåæ³äººã¯ä¿®æ£ç³åãç´ç¨ããã é¢ä¿è ã«ããã¨ãè®å°¾æ°ã¯ç¶è¦ªã®å¾ãç¶ããï¼ï¼å¹´ï¼æã«ä½è·ã«å°±ä»»ã趣å³ã§åéãã¦ããã¹ã¤ã¹è£½é«ç´è æè¨ã®è³¼å ¥è²»ç¨ãé課ç¨ã¨ãªãå®ææ³äººã®åå ¥ããæ¯åºãããåå½ç¨å±ã¯ãè æè¨ã®è³¼å ¥ã¯å®ææ´»åã¨ã¯ç¡é¢ä¿ã§ãæºæ³å¾´åã®å¿ è¦ãªè®å°¾æ°ã¸ã®çµ¦ä¸ã¨å¤æããã¨ã¿ãããã è æè¨ã¯ï¼åå½ããï¼ï¼ï¼ï¼ä¸åãè¶ ãããã®ããããå¤ãæã§ç´ï¼ï¼åãææãã¦ããã¨ãããè®å°¾æ°ã¯ä»å¹´ï¼æã«è²¬ä»»ãåã£ã¦è¾ä»»ããç¾å¨ã¯å寺ã®è·å¡ãæè¨ãå¦åãã¦ç´ç¨ã®ä¸é¨ã«å ã¦ãä¸è¶³åã«ã¤ãã¦ã¯åæ³äººããåãã¦å¼æ¸ããã¨
ã©ã³ãã³ã°
ãç¥ãã
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}