åºå³¶å¤§å¦ã¯ãé»æ°åè·¯ã«ããã¦æ¬ä¼¼çãªãã©ãã¯ãã¼ã«ãåµçãããããç¨ããã¬ã¼ã¶ã¼çè«ãæ§ç¯ãããã¨ã«æåããç¾å¨ã®æè¡ã§ã¯å®éã®ãã©ãã¯ãã¼ã«ã§ã®è¦³æ¸¬ãä¸å¯è½ãªãã¼ãã³ã°è¼»å°ã観測å¯è½ã«ããä¸è¬ç¸å¯¾æ§çè«(éå)ã¨éååå¦ãçµ±ä¸ãããéåéåçè«ãã®å®æã«åããåãçµã¿ãå éãããã¨ã«ãªãã¨çºè¡¨ããã åææã¯ãåºå³¶å¤§å¤§å¦é¢ å é²ç工系ç§å¦ç 究ç§ã®çå±±æ¥è大å¦é¢çã«ãããã®ã詳細ã¯ãè±ãªã³ã©ã¤ã³ç·åå¦è¡èªãScientific Reportsãã«æ²è¼ãããã èªç¶çã«åå¨ããé»ç£æ°åãå¼·ãåãå¼±ãåãéåã®4ã¤ã®åããã¹ã¦çµ±ä¸ã§ããã¨ãããè¶ å¤§çµ±ä¸çè«ã¯ãéåãæ±ãä¸è¬ç¸å¯¾æ§çè«ã¨ãéåã®ä¸çãæ±ãéååå¦ãçµã³ã¤ãããã¨ãã§ããã°å®æããã¨ããããã¨ããããéåéåçè«ããªã©ã¨ãå¼ã°ããããéåã¨éåã®ä¸çã¯æãåããæªãããã®çµ±ä¸ã¯å°é£ã¨ããã4ã¤ã®åã®çµ±ä¸ã«ã¯ã¾ã é·ãæéããããã¨ã
ç§ã®å¤§å¥½ããªå³ä»ãã§ãâ¡ ãã¼ãã®ããé¦ãã§é£æ¬²ãããå ·æ²¢å±±çãè¾¼ã¿å¾¡é£¯âª å°ããåä¾ã大人ããã¯ãã¯é£ã¹ã¦ããã¾ãã ãã®ã¬ã·ãã®çãç«ã¡ ã¨ã«ããçãè¾¼ã¿ã飯ã好ãã§ãããã試ããçµæãããªãã¾ããâªãã以æ¥ãã¼ã£ã¨ãã®ä½ãæ¹ã§ãâ ãã£ããããå³ã好ããªäººã«ã¯ãªã¹ã¹ã¡ã§ã(^â^) ç§ã®å¤§å¥½ããªå³ä»ãã§ãâ¡ ãã¼ãã®ããé¦ãã§é£æ¬²ãããå ·æ²¢å±±çãè¾¼ã¿å¾¡é£¯âª å°ããåä¾ã大人ããã¯ãã¯é£ã¹ã¦ããã¾ãã ãã®ã¬ã·ãã®çãç«ã¡ ã¨ã«ããçãè¾¼ã¿ã飯ã好ãã§ãããã試ããçµæãããªãã¾ããâªãã以æ¥ãã¼ã£ã¨ãã®ä½ãæ¹ã§ãâ ãã£ããããå³ã好ããªäººã«ã¯ãªã¹ã¹ã¡ã§ã(^â^)
æã½ã·ã£ã²ã®æ女æ§å£°åªãç´ è¡ã®æªãç·ã®ã»ãã¬ã§ããã¨ã®åãæµããã¦çä¸ãã¦ããã åããã¹ã¦äºå®ã§ããã¨ããã°ãæ¼ãã¦ãããã£ã©ãéæ¿ããã®ã¯ä¸å¯é¿ã¨å½ç¶ã®ããã«èªããã¦ãããã彼女ãä»äºã奪ãããã®ã¯ä¸å½ã§ããã 以ä¸ã®éããæ女æ§å£°åªã¯å¥ç´ã解é¤ãããã¹ãä¸æ£è¡çºã¯ä½ãè¡ã£ã¦ããªãã ã»åæ³ç¯ã«ãããç¯ç½ªè¡çºã¯è¡ã£ã¦ããªã ã»æ¬äººãç¸æã®ç·ãç¬èº«ã¨ã®ãã¨ãªã®ã§ãä¸è²è¡çºã«ããæ°äºä¸ã®æå®³è³ å責任ãçºçããªã ã»ã²ã¼ã ã®æªå ¬éæ å ±ã交éç¸æã«æããçã®ã³ã³ãã©ã¤ã¢ã³ã¹éåãç¯ãã¦ããªã ããã¦è¦è½ã¨ããã¡ã ããä»åã®ã»ãã¯ã¹ã»ã¹ãã£ã³ãã«ã¯å½¼å¥³èªèº«ãæå³çã«ãããã¯é失ã§å ¬éããæ å ±ã§ã¯ãªãã 第ä¸è ã§ããç·ã®æ人ãå½ã¦ã¤ãã¨ãã¦æ´é²ãããã®ã§ãããæ女æ§å£°åªèªèº«ã¯æã¾ããã¦ãã©ã¤ãã·ã¼ãæããããããã°ãªãã³ã¸ãã«ãã®è¢«å®³è ã§ããã ââãã¡ããããã¸ãã¹ä¸ã®çç±ã§æ女æ§å£°åªã¯éæ¿ãã
å®æçã«ãªãã¸ã§ã¯ãæådisãæ¸ãã¦ãã¾ã£ã¦ãã®ã ãã©ã ã¨ãããããªãã¸ã§ã¯ãæåã®è©±ãããã¨å®ç¾©ã人ã«ãã£ã¦éããããã®ã§ãæ¹ãã¦ããã§ã®å®ç¾©ãæ¸ãã¦ãã㨠ãåºæ¬çã«ã¯OMTã®ããã¼ã¿æ§é ã¨æ¯ãèããä¸ä½ã¨ãªã£ããªãã¸ã§ã¯ãã®éã¾ãã¨ãã¦ã½ããã¦ã§ã¢ãçµç¹åãããã¨ã ã«å¾ãã®ã§ãã ã1990å¹´ã«æµè¡ãã½ããã¦ã§ã¢éçºã®ãã¹ã¦ã飲ã¿è¾¼ã¿ããã¾ã¨ãªã£ã¦ã¯äººããããå®ç¾©ãéã£ã¦æè¡çè°è«ã«ä½¿ããªããªã£ãã主ã«ãªãã¸ã§ã¯ããåºæ¬åä½ã¨ãã¦ããã°ã©ã ãæ´çãããããããæããã¼ã±ãã£ã³ã°ç¨èªã ã¨ããæãã§ãã ã»ã¨ãã©ã®å ´åã§äººã«ãã£ã¦ãªãã¸ã§ã¯ãæåã®æãç¯å²ãéãããã¦ãæè¡çç¥è¦ã®å ±æã«ã¯ä½¿ããªããªã£ã¦ãã¾ããã§ãããããã®å®ç¾©ã«ãããªãã¸ã§ã¯ããåºæ¬åä½ã«ããã¨ããã®ã¯éè¦ã§ã¯ãªããã¨ã ã½ããã¦ã§ã¢ã®çµç¹åã®åä½ã¨ãã¦ãªãã¸ã§ã¯ãã使ãã¨ããã®ã大äºã§ããã¼ã¿ã®æ¬éã«æ§é ä½ä»£
Photo by J Taubitz on UnsplashPython is kind of like a plain old gray sweater. Gets the job done, but it doesnât really say anything. You wear it when you have to wear something. But itâs just there for one basic purpose. Thatâs my first impression of Python after observing it from afar for several years. It has been around for long enough that people found a use for it. Mostly machine learning an
ããã ãããå æ¥ããã®ãããé¡ãæä¸ããã¦ãã¾ããã åºé ãã¾ããããã®ãã¿ã«ã¤ãã¦å°ãæãä¸ãã¦ã¿ã¾ãã 念ã®ããå人çãªã¹ã¿ã³ã¹ãããããã表æãã¦ããã¨ããªãã¸ã§ã¯ãæåã«å¯¾ãã¦ã¯ãããªãã«å¥½æçã§ãããå¥ã«æ代ã®æå 端ã ã¨ãã½ããã¦ã§ã¢éçºã«å¿ é ã®ç¥èã¨ããã»ã©ã§ã¯ãªãï¼ã§ãç¥ã£ã¦ããã¨ä¾¿å©ã¨ããããç¥ããªãã¨ä¸ä¾¿ãªãã¨ããããããããªãã®ã§ããããé¿ããã®ã¯ããããããªãï¼ã¨ããããã温度æã§ãã ãªãã¸ã§ã¯ãæå is ä½ ããããããªãã¸ã§ã¯ãæåãã¨ããè¨èèªä½ã座ãã®æªãè¨èã§ãã æå³ãæ確ãªã®ã¯ããªãã¸ã§ã¯ãæåããã°ã©ãã³ã°(OOP)ããããªãã¸ã§ã¯ãæåããã°ã©ãã³ã°è¨èª(OOPL)ããããªãã¸ã§ã¯ãæåè¨è¨(OOD)ãããªãã¸ã§ã¯ãæååæ(OOA)ãã¨ãã£ãããªãã¸ã§ã¯ãæåãªãã¨ããã®æ¹ã§ããããããµãã£ã¨ã¾ã¨ããï¼ãããªæ°ãããï¼åèªãããªãã¸ã§ã¯ãæåã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}