ããã³ãã¨ã³ãã®ãã©ãã¤ã ãåèã«ããã¯ã¨ã³ãéçºãåèãã / TypeScript ã«ãã GraphQL ããã¯ã¨ã³ãéçº
ããã³ãã¨ã³ãã®ãã©ãã¤ã ãåèã«ããã¯ã¨ã³ãéçºãåèãã / TypeScript ã«ãã GraphQL ããã¯ã¨ã³ãéçº
èªç¥è² è·ããã³èªç¥è² è·çè« (Cognitive Load Theory) ãããå°ãæ£ç¢ºã«ç解ããããã®å¿çå¦ç 究ã»ç¥è¦ã®ç´¹ä» ãã®è¨äºã®ç®ç ããæ°å¹´ã§ãã½ããã¦ã§ã¢éçºãããã°ã©ãã³ã°ã®æèã§ããèªç¥è² è·ã ããã³ ãèªç¥è² è·çè«ã ã¨ããç¨èªãããè¦èãããããã«ãªãã¾ãããç§ãä»æãåºããã ãã§ãã以ä¸ã®ãããªæ¸ç±ã Podcast ã§éè¦ãªãã¼ã¯ã¼ãã¨ãã¦åãä¸ãããã¦ãã¾ãã A Philosophy of Software Design, 2nd Edition ãã¼ã ãããã¸ã¼ 価å¤ããã½ããã¦ã§ã¢ããã°ããå±ããé©å¿åçµç¹è¨è¨ ããã°ã©ãã¼è³ ï½åªããããã°ã©ãã¼ã«ãªãããã®èªç¥ç§å¦ã«åºã¥ãã¢ããã¼ã fukabori.fm 102. A Philosophy of Software Design (3/3) w/ twada ãã®ãèªç¥è² è·ãã§ãããå°ãªãã¨ãè¿å¹´è¦è
ã¯ããã« ãã¤ã¦ãã¦ãµã®è·³ã³ã§çåãã¬ã¼ãã³ã°ãã¦ããæ代ãããã¾ããã (ã¢ãã¡ã巨人ã®æãããå¼ç¨) (ã¢ãã¡ãã¢ã¿ãã¯No.1ãããå¼ç¨) (ã¢ãã¡ããã¼ãªã³ã°ã£ã©ããªãã¥ã¢ãããå¼ç¨) ç§ãå°å¦æ ¡ã®ãããã¦ãµã®è·³ã³ããã£ã¦ãã¾ããã éåè² è·ãé«ããããªãã®å¹æãå¾ã¦ããå®æãããã¾ããã ã¾ããå®éãéåè½åãã¢ãããã¾ããã ããããã¢ã¹ãªã¼ãã®åãã®ç 究ããã¦ããé¢è¥¿å¤§å¦ææã®å°ç°ä¼¸åæ°ã«ããã¨ããã¦ãµã®è·³ã³ã¯ãã¬ã¼ãã³ã°å¹æãç¡ããããã§ãã ã¦ãµã®è·³ã³ï¼ã¦ãµã®ã¨ã³ï¼ã¯ãï¼ç¥ï¼1980年代以éã¯ãã¬ã¼ãã³ã°å¹æãç¡ãæ éã®ãªã¹ã¯ãé«ãã¨å¨ç¥ããã¦å»ãã(åºå ¸ï¼å°ç°ä¼¸åãã¦ãµã®è·³ã³ä¿¡ä»°ã¨ã¯ä½ã ã£ãã®ãããã¹ãã¼ãã´ã¸ã©ã第2013-11-05å·ãã¹ãã¼ããããã¯ã¼ã¯ã¸ã£ãã³ã 12-14é ã )ã(Wikipediaããå¼ç¨(太åå¼ç¨è ) ) ããã¬ã¼ãã³ã°å¹æãç¡ããã¨ãæ
<blockquote class="hatena-bookmark-comment"><a class="comment-info" href="https://b.hatena.ne.jp/entry/4691399354969426082/comment/jacoby" data-user-id="jacoby" data-entry-url="https://b.hatena.ne.jp/entry/s/nlab.itmedia.co.jp/nl/articles/2009/14/news016.html" data-original-href="https://nlab.itmedia.co.jp/nl/articles/2009/14/news016.html" data-entry-favicon="https://cdn-ak2.favicon.st-hatena.com/
ã¯ããã« ãã¨ãã¨ãµã¤ãã®ãã³ãã£ã¼ã§ãããã2014å¹´ã«éåã³ã³ãã¥ã¼ã¿ã«ãããããã¦ããã¯ããããä¼ç¤¾ãè²ã¡ãåãã¦ããã¨ãããã®ã¯å¤§äºã ãªã¨æãã¦ã¾ãã Qiitaã¯ãã¨ã ãæ¸ããªãã¨ãããªããããï¼å¤åï¼ã®ã§ãããããæ¥æ¬åã®éåã³ã³ãã¥ã¼ã¿ãã³ãã£ã¼ã¨ãã¦ã¾ãäºå¹´ç®ã¾ã§ã«æ°ã¥ãããã¨ãæ¸ãã¦ã¿ã¾ãã ãã¨ãã¨ã¯ãã¶ã¤ã³ä¼ç¤¾ ãã¨ãã¨ãã¡ã®ä¼ç¤¾ã¯ãã¶ã¤ã³ä¼ç¤¾ã§ãããåºèº«ã建ç¯äºåæã ã£ãã®ã§ããã®ã¾ã¾2009å¹´ã«ç¬ç«ãã¦ãã¶ã¤ã³ããã¦ã¾ããã建ç¯æ代ã¯photoshop+autocadã使ã£ã¦ãã¾ãããã¤ã©ã¬ã¯ãã¾ã ã«è¦æã§ãã åã®å»ºç¯äºåæã¯éç å¾å»ºç¯äºåæã¨ããã¨ããã§ãéå±±ã®ç¾è¡é¤¨ã®è¨è¨ãä¸å½ã®ã¢ãªããã®ç¤¾å±ã®ã³ã³ããªã©ã主ã«ãã¦ãã¾ããã 建ç¯ã¯å½æCGãã¼ã¹ãä»äºãããããããã¾ããã®ã§ãCGã®ã¢ããªã³ã°ãã¬ã³ããªã³ã°ããããªããå½åã¯çè¨ãç«ã¦ã¦ãã¾ããããã ããªã¼ã
身å ã§deep learningã®åå¼·ä¼ããã£ããã§ãããã ã£ãã®ã§å®è£ ããï¼ èªãã ã®ã¯å¤§ä½ãããã¸ãï¼ NEURAL NETS FOR VISION(CVPR2012 tutorial) CS294A Lecture notes Sparse autoencoder ImageNet Classification with Deep Convolutional Neural Networks autoencoder autoencoderã¯unsupervised feature learningã®ä¸ç¨®ï¼Convolutional Neural Netã¨ã¯éã£ã¦ï¼æå¾ã®å¤å¥å¨ã®äºæ¸¬èª¤å·®ãback propagationãããï¼ã¨ããäºã¯ãããã種ç¹å¾´æ½åºã§å®çµããã¦ããï¼ autoencoderãä¸è¨ã§ã¾ã¨ããã¨ï¼ã次å åæ¸ãç¹°ãè¿ãNeural Netãå¤æ®µã«ç¹ãã¦ç¹å¾´æ½åºãè¡ãææ³
ã¸ã¥ã³ã¯å æ± è¢æ¬åºã«ã¦ 10/11 ã«è¡ãããããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ã(PRML) æ好家ã®éã¾ããããããªãã£ãããã¼ã¯ã»ãã·ã§ã³ã«ã®ãã®ãè¡ã£ã¦ãããã°ãããåã§ããã¹ã£ã¦ããããããã¨ããããã¾ããï¼ãç²ãæ§ã§ããï¼åä½ PRMLåäººèª ããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ã®å¦ç¿ãï¼æé»éä¿¡å£ï¼ åè¡è¨å¿µãã¼ã¯ã»ãã·ã§ã³ ãä»åº¦ããããã!? PRMLã®å¦ç¿ã®å¦ç¿ã http://www.junkudo.co.jp/tenpo/evtalk.html#20121011_talk åå ãã¦ä¸ãã£ãä¸ã«ææ³ã¾ã§ããã°ã«ããããã¦ä¸ãã£ãæ¹ã«ã¯æè¬æè¬ãªããã ãããããã£ãããã°ã®ä¸ã§ã@yag_ays ãããã¡ããã©ä»æ°ã«ãã¦ãããã¨ãæ¸ããã¦ããã®ã§ãã¡ããã£ã¨ç´¹ä»ã ãä»åº¦ããããã!? PRMLã®å¦ç¿ã®å¦ç¿ãã«åå ãã¾ãã - Wolfeyes Bioinformatics beta ä½è«ï¼
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}