並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 12 件 / 12件

新着順 人気順

代数学の検索結果1 - 12 件 / 12件

タグ検索の該当結果が少ないため、タイトル検索結果を表示しています。

代数学に関するエントリは12件あります。 数学、 勉強、 英語 などが関連タグです。 人気エントリには 『線形代数学+Rustで画像圧縮のアルゴリズムを実装する - Qiita』などがあります。
  • 線形代数学+Rustで画像圧縮のアルゴリズムを実装する - Qiita

    こんにちは👋 長く暑い夏が終わろうとしている今ですが、筆者は秋の季節を満喫しております。 LabBaseでは線形代数学の基礎を使って検索エンジンを構築していますが、レコメンド、検索アルゴリズムによく使われる王道の手法について記事を書くことにしました。 概要 線形代数学の特異値分解(SVD)の知識を活かして、原始的な画像圧縮アルゴリズムをRustで実装します。 SVDとは? SVDは、線形代数学でよく使われる行列の分解です。行列の分解は、同じマトリックスを他のマトリックスに分けて表現することです。SVDの他に、LU三角分解、QR分解などがあります。 SVDは、あるAというマトリックスの列空間と行空間の固有ベクトルを計算して、それぞれをUとVというマトリックスに収めます。さらに、Σという対角行列に、固有値の平方根を入れます。Vの転置行列をV'と定義しますが、以下の分解になります。 Σの体格行

      線形代数学+Rustで画像圧縮のアルゴリズムを実装する - Qiita
    • 代数的データ型と初等代数学

      「関数プログラミングとはなんですか?」と問われたときには「デ,データファースト……(震え声)」と答えることが多いのだが,実際 Haskell や OCaml などの言語を特徴付けるものとして,代数的データ型 (Algebraic Data Type; ADT) の存在は無視できないだろう.その有用性ゆえに,近年では新たな言語の策定の際にその概念が輸出され,Rust や Swift などの言語にも採用されている. 「代数的データ型とはなんですか?」と問われたときには——問われたことがないのでわからないのだが——おもむろに ghci か utop を立ち上げて,解説を始めるのではないかと思う.ひとしきり解説をした後,「つまり直積の直和なんですよ〜🙌✨」と言って話を締めくくるだろう. int 型や float 型など,「メモリ上の表現」という計算機の気持ちに極めて寄り添ったプリミティヴなデータ

        代数的データ型と初等代数学
      • なぜ教養数学として微積分学と線形代数学を学ぶのか ブルバキが現代数学に与えた影響 | 趣味の大学数学

        どうも、木村(@kimu3_slime)です。 「大学数学のロードマップ ~ 分野一覧と学ぶ順序」では、教養数学として微積分学、線形代数学を学ぶことを紹介しました。 微積分学と線形代数学は、高校の数学の時点でもその入門的な内容が教えられます。 なぜこのようなカリキュラムになっているのでしょうか? それには、ブルバキと呼ばれる数学者集団が大きく関係しています。 ブルバキとはニコラ・ブルバキ(Nicolas Bourbaki)は、フランスの数学者……に見せかけた、数学者集団のペンネームです。 つまり、架空の存在を作り、その名前で教科書を書いていったのです。 ブルバキの正体は長い間不明でしたが、現在では公開されています。エンリ・カルタン、クロード・シュヴァレー、アンドレ・ヴェイユなど、20世紀を代表する有名な数学者たちが、当時30歳前後に所属していたというのだから驚きです。 画像引用:Assoc

          なぜ教養数学として微積分学と線形代数学を学ぶのか ブルバキが現代数学に与えた影響 | 趣味の大学数学
        • JavaScript代数学 (1)

          2021 年初めに公開された以下の記事では、クライアント・サーバー同型写像 (client-server isomorphism) という概念が提唱されました。しかしながら、この記事ではこの用語について少し触れられただけで、クライアント・サーバー同型写像という学問領域はまだ霧に包まれています。そこで、 JavaScript 代数学シリーズでは、最終的にクライアント・サーバー同型写像を理解することを目標として学習を進めていきます。 同型写像とは? この用語で目につくのは「同型写像」という用語です。写像とあることからも分かるようにこれは数学用語ですね。Wikipedia の「同型写像」の記事で調べてみましょう(本当は数学書のような専門的な文献にあたるほうが良いでしょうが、このシリーズでは面倒なので Wikipedia を参照しながら進めていきます)。Wikipedia によれば、次のように書か

            JavaScript代数学 (1)
          • 【AbstractAlgebra.jl】Juliaで代数学をやってみたいんじゃ①

            経緯 Juliaを触りはじめて1ヶ月程。 とある有限群を調べたときに(参照:【初めてのJuliaプログラミング】とある有限群を具体的に求めてみた。)、Juliaで代数学の道具を揃えてみたいと思いました。 AbstractAlgebra.jlが便利そうなので、使い方を備忘録として少しずつ記録していこうと思います。 まずはここから見ると良さそう 英語が苦手な上、プログラミングも初心者すぎて、最初はAbstractAlgebra.jlのトップページを眺めながら途方に暮れていました。 しかし、以下のページを参照することで、徐々に「なんか取っ掛かりが見えてきた…」となってきました。私のように「このドキュメントなんもわからん」な方は、まず最初に読んでみると良いかもしれません。 まずコレを見てみよう!→Constructing mathematical objects in AbstractAlgebr

              【AbstractAlgebra.jl】Juliaで代数学をやってみたいんじゃ①
            • ChatGPT(GPT4)と一緒に代数学を勉強してみたらなんか謝られた - ashiato45の日記

              これは何? 最近ちびちび宮西正宜・増田佳代さんの「代数曲線入門」を読んでいるのですが、わからないところにあたったときに片手間の数学だとなかなか進まないものです。 代数曲線入門 作者:正宜, 宮西,佳代, 増田共立出版Amazon そんな折OpenAIのChatGPTの新バージョン、GPT4の性能が高いと聞いたので、「試してやろう」とかそういう気持はなく、単に一緒に学ぶパートナーとしてGPT4を試してみることにしました。 わからなかったところ 2.3節「代数曲線の局所環」で、Cをf(X,Y)=0で定まる既約代数曲線とし、Rを座標環k[X, Y]/f(X, Y)としたとき、Cの点とRの極大イデアルが一対一対応するという話をしています。ここで、極大イデアルから点をつくり、そこからまた同じ極大イデアルに戻るところを議論するところで次のように書いてあります。ここで、θはk[X,Y]からRへの全射です

                ChatGPT(GPT4)と一緒に代数学を勉強してみたらなんか謝られた - ashiato45の日記
              • UoPeopleでCollege Algebra(大学代数学)を修了した振り返り - えんぴつぶろぐ

                学費無料のオンライン大学、University of the PeopleでMATH1201-College Algebra(大学代数学)を履修したのでその感想を書きます。 前回までのあらすじ コンピューターサイエンスの学位(学士)を取るために、University of the Peopleという学費無料の米国オンライン大学に入学してみたよ。 英語の学力要件はパスできたけど、正式な学部生(Degree-seeking student)になるためには、2つ以上の基礎コースを修了する必要があるよ。 1つ目の基礎コースOnline Education Strategiesは無事終了したよ。 コロナ禍で在宅勤務 with kidsの最中だったからクソしんどかったよ。 2つ目の基礎コースはCollege Algebra(大学代数学)を受けることにしたよ。 これまでのUoPeople関連の記事はこち

                  UoPeopleでCollege Algebra(大学代数学)を修了した振り返り - えんぴつぶろぐ
                • 線形代数学の基本定理 - 4つの部分空間 - Qiita

                  これは何? Gilbert Strang 先生から学んだ線形代数シリーズ、第2回目の記事です。全体は以下から。 今回は、線形写像の表現行列 $A$ の「4つの部分空間」(The Four Subspaces)について、証明ではなく直感的に理解する方法について書いてみます。それらは$A$の零空間、$A$の列空間、$A$の行空間、$A$の左零空間です。 これは、『線形代数学の基本定理』とも呼ばれています。この定理には、先生の教育上の功績が大きいと思います。 線形代数学の基本定理 (Wikipedia) - $(m \times n)$行列 $A$ が表現する$\mathbb{R}^{n}$ から $\mathbb{R}^{m}$ への線型写像に自然に定義される、4つの部分空間の間に成り立つ関係 ザ・4つの部分空間 ここでは、実数のベクトル空間を扱います。行列 $A$ ($m \times n$

                    線形代数学の基本定理 - 4つの部分空間 - Qiita
                  • 近刊『代数幾何学入門―代数学の基礎を出発点として―』まえがき公開|森北出版

                    2021年1月下旬発行予定、『代数幾何学入門―代数学の基礎を出発点として―』(永井保成 著)のご紹介です。 同書のまえがきを、発行に先駆けて公開します。 *** 『代数幾何学入門―代数学の基礎を出発点として―』はじめに 著:永井保成本書は、早稲田大学基幹理工学部数学科3年次および4年次向けの講義「代数学C」で著者が扱ってきた話題についての講義予稿をもとにして作られたものである。代数学の必修講義で群、環、加群および体についての基礎的な事項を習得した数学科学部生に対して、代数幾何学のいくつかの話題を、代数学の基礎理論の延長上に置く形で提示し、代数幾何学への興味を喚起するとともに、可換環論、表現論、ホモロジー代数といったさらに進んだ純代数的な理論の学習を動機づけることを目指している。 代数学とは何であるか。それに極めて大雑把に答えるとすれば、「数と式の演算」について論じる数学の分野であるというこ

                      近刊『代数幾何学入門―代数学の基礎を出発点として―』まえがき公開|森北出版
                    • 最速で線形代数学の全体像:大学数学入門【10分でわかる】

                      線形代数学の全体像、キーワード、応用をやさしく解説します。 線形代数学は大学数学の基礎で、教養数学のひとつです。 僕が初めて学んだときは、行列の計算の複雑さ、n次元の抽象さに戸惑いました。 「線形代数とは何か?」をこの動画で知って、楽しく学びましょう。 0:00 オープニング 0:47 1. 線形代数、ベクトルと行列 2:16 2. 線形方程式、ガウスの消去法 3:54 3. 可逆行列、逆行列、行列式 4:57 4. 線形空間、次元、線形写像 6:06 5. ノルム、内積、直交化 6:54 6. 固有値・固有ベクトル、対角化 8:10 7. 2次形式、正定値行列 8:39 8. 関連する話題 9:18 まとめ、エンディング 線形代数の分野ごとの記事まとめ:使い道を知る https://math-fun.net/20220207/22183/ Twitter https://twitt

                        最速で線形代数学の全体像:大学数学入門【10分でわかる】
                      • 線形代数学とは何か|加藤文元

                        線形代数学は理系の学生にとっては大学初年度で学ぶ科目であり、専門的な数学の基礎課程のひとつである。しかし、だからといってそれが初等的で平易であるわけではない。実際、この学問はとても深く、その全体像を鳥瞰することは難しい。「線形代数学とは何か」とは、実は大きな問いなのである。「線形代数学を理解する」とはどういうことか、何をどこまで理解できれば線形代数学をわかったことになるのか、といったことすら適切に言語化するのは至難の業だ。私が若い大学教員だったときにすでに古参だったある有名教授の弁にも「線形代数学をちゃんと理解している学生は少ない」というのがあった。このちゃんと●●●●の意味が難しいのだ。 線形代数学をマスターする上で最初の基本は、「行列の計算」ができること、もっと言えば「行列が使いこなせる」ことだ。これはおそらく誰でも同意するし、間違いのないところだろう。そのため、行列の基本、掃き出し法

                          線形代数学とは何か|加藤文元
                        • 加藤文元『代数学の難所ー抽象的世界に住む』.pdf - Google ドライブ

                          ログイン

                            加藤文元『代数学の難所ー抽象的世界に住む』.pdf - Google ドライブ
                          1

                          新着記事