We introduce the dense captioning task, which requires a computer vision system to both localize and describe salient regions in images in natural language. The dense captioning task generalizes object detection when the descriptions consist of a single word, and Image Captioning when one predicted region covers the full image. To address the localization and description task jointly we propose a
How It Works Prior detection systems repurpose classifiers or localizers to perform detection. They apply the model to an image at multiple locations and scales. High scoring regions of the image are considered detections. We use a totally different approach. We apply a single neural network to the full image. This network divides the image into regions and predicts bounding boxes and probabilitie
è¨èªæ©è½ãè³å ã§å±å¨åããã¦ãããã¨ã¯è³ç§å¦ã®é»ææããåãã£ã¦ãã¾ãããããã¼ã«ãçºè©±ã«é¢ä¸ããè³å é åãå·¦åçåé èå¼èé¨ã«åå¨ãããã¨ãçºè¡¨ããã®ã¯19ä¸ç´ä¸åº¸ã§ããã«ãã¼ã«ãç´°èæè²ã«ãã£ã¦è³ãç¥çµç´°èããã§ãã¦ãããã¨ãçªãæ¢ãã以åã®è©±ã§ãããã®ããã«è¨èªã¯è³ã®æ©è½å±å¨èª¬ãæ¯æããå¼·ãæ ¹æ ã§ãããå ¨è³ã¢ã¼ããã¯ãã£ä»®èª¬ãæ¯æãã証æ ãæä¾ãã¦ããã¨è¨ãã¾ãã䏿¹ã§ãæ©è½çè³ç»åç ç©¶ã¯åç´ãªèª²é¡éè¡æã«ãå¤ãã®è³é åãé¢ä¸ãããã¨ã示ãã¦ãã¾ãããååå ¨è³ã¢ã¼ããã¯ãã£åå¼·ä¼ã§ã®è¥¿æ¬å çã®è¬æ¼ã§ã¯è³ã®ä¸æ¬¡å å ¨ä½ã®è¡æµéã®å¤åãããæã ã®å¿ã®åããäºæ¸¬ãå¯è½ãªãã¨ã示ããã¦ãã¾ãã è³ã®æ©è½ãèããä¸ã§ãè¨èªã顿ã«ãããã¨ã¯ãåç©å®é¨ã§ã¯å¾ãããªãç¥è¦ãå¾ããã¨ãã§ããç¥çæ å ±å¦çã®è¤éããè§£æãããããã«å¿ è¦ãªãã¨ã§ããã¨èãããã¾ããä»åã¯äº¬é½å»ç§å¤§å¦ã®è¿è¤å çã«è³å ç¥çµç·ç¶
NAMM 2017: Behringeråã®ã·ã³ã»ãµã¤ã¶ã¼ããDeepMind 12ããéã«è²©å£²éå§ï¼ 12ãã¤ã¹ä»æ§ã®æ°ä¸ä»£ã¢ããã°ã»ã·ã³ã»ãµã¤ã¶ã¼ æ¨å¹´ã¢ãã¦ã³ã¹ãããBehringeråã®ã·ã³ã»ãµã¤ã¶ã¼ããDeepMind 12ããä¸çä¸ã®ã·ã³ã»ã»ããã¢ããæ³¨ç®ãéãã¦ãã¾ãããã¨ã¼ãããã§ã¯æ¨å¹´æ«ãéã«è²©å£²ãéå§ããã¾ãããã¨ã¼ãããæå¤§ã®æ¥½å¨åºãThomannã®è²©å£²ä¾¡æ ¼ã¯1,198ã¦ã¼ãï¼ç¾å¨ã®çºæ¿ã¬ã¼ãã§ãç´147,000åï¼ã§ãäºæ³ããã¦ããä¾¡æ ¼ãããæçµçã«2ã3å²é«ãå¤ä»ãã«ãªã£ããããããããThomannãã¯ããã販売ãéå§ããæ¥½å¨åºã§ã¯ã»ã¼ã½ã¼ã«ãã»ã¢ã¦ãã¨ãªã£ã¦ããããã®äººæ°ã®é«ãã伺ãã¾ããThomannã®æ¬¡åå ¥è·ã¯2æ24æ¥ã®ããã§ãã¢ã¡ãªã«ã®Sweetwaterã§ã¯1æä¸æ¬ã«è²©å£²ãéå§ãããã¨ã®ãã¨ãBehringerã®ç·å¸¥ãã¦ã¼ãªã»ããªã³ã¬ã¼ï¼Uli Be
Behringerï¼ããªã³ã¬ã¼ï¼ã12é³ããªãã©ããã¯ã»ã¢ããã°ã·ã³ã»ãDeep Mind 12ããå ¬éï¼ Behringerï¼ããªã³ã¬ã¼ãããªã³ã¸ã£ã¼ï¼ãã·ã³ã»ãéçºä¸ï¼ã¨ããåãã2å¹´è¿ãçµã¡ã¾ããããã¤ãã«ãã®ãã³å ¬å¼ãã£ã¼ã¶ã¼ãããªãå ¬éããã¾ããã vol.1 vol.2 é³ãæ åããæ¨æ¸¬ããã«ãåã ã£ããARP Odysseyãç³»ã®ã·ã§ã¤ãã§ã¯ãªãããã§ãããã¤ã¼ã«ã¨ãã³ãã¼ã¯ããã¢ã¼ã°é¢¨ï¼ã¹ãã¬ãªã¢ã¦ãã®ããã§ããã ããããã¢ããã°ã®è¡¨ç¤ºãã»ã»ã»ä½ã§ããããï¼ VCA ã¬ãã«ã¡ã¼ã¿ã¼ï¼ã®ãããªãã®ãè¦ãã¾ãã Syncæ©è½ã¨ãããã¨ã¯2VCO以ä¸ã¨ãããã¨ã§ããããï¼ LOFã¯2åºã®ããã§ã 4ãªã¯ã¿ã¼ãã®48éµï¼ Vol3å ¬éï¼ Behringerå ¬å¼Facebookãçºè¡¨ãã¦ããããã«ã©ãããããªãã©ããã¯ã·ã³ã»ã®ããã§ãã 2DCOã¨ãã表示ãè¦ãã¾ããã»ã»ã»ãã¸ã¿ã«
12ãã¤ã¹ã«ä¸ç´åã®ã¨ãã§ã¯ãç¾¤ï¼ ããªã³ã¬ã¼åã®ã·ã³ã»ãµã¤ã¶ã¼ï½¢DeepMind 12ï½£ãã¤ãã«è²©å£²éå§ï¼2017.01.07 15:09 ã¤ããã¦ã¦ã¹å ç¦ããã¦ããããããã æ¨å¹´ãããã©åºãPVãç¶ãã¦ããããªã³ã¬ã¼åã®ã·ã³ã»ãµã¤ã¶ã¼ï½¢DeepMind 12ï½£ãã¨ã¼ãããã§ã¯æ¨å¹´æ«ããã¤ãã«è²©å£²ãå§ã¾ã£ãã¿ããã§ããï¼ é³é¿æ©å¨ãåãæ±ã£ã¦ããããªã³ã¬ã¼ã«ã¨ã£ã¦åã®ã·ã³ã»ã§ããããã¤ã¢ããã°ããã¤Prophet-6ã®åã®12ãã¤ã¹ããªãã©ããã¯æè¼ããµã¦ã³ãã¯PVãªã©ããããç¨åº¦ããã£ã¦ããã®ã§ãçºå£²ææãä¾¡æ ¼ãæ°ã«ãªã£ã¦ã人ãå¤ãã®ã§ã¯ãªãã§ããããï¼ ãã¡ãã¯sonicstateã«ããã¬ãã¥ã¼åç»ã ä¸å¤®ã®æ¶²æ¶ç»é¢ã§æ³¢å½¢ã®ç¢ºèªããã³ã¯åãæ¿ããè¦ãããã¨ãã¸ã¿ã«çã§ããããªã·ã¬ã¼ã¿ã¼ã¯ãã£ããã¢ããã°ãã·ã³ã¯ã»ãµã¦ã³ããªãã¦"ã¾ãã«ã¢ããã°"ã¨ããå¼·çãªãã¡ããå ·åã§ãã ãã
ãã·ã£ã¼ãããã«ãã¾ããï¼ Vol.003ã10å¹´éãããã¨ãï¼é§ åã®ãåºã«ã¦ãè¶ çµ¶ãå¾ãªæè¬ã®ã»ã¼ã«ãã£ã¦ã¾ã 2017.02.08 00:01 æ´æ° 2017.02.08 åæ ç§èåã®PCNETã§ï¼ãã£ããï¼åãã¦ãããç§å¯ã®èããã£ã©åºå¡ã·ã£ã¼ãããããå¾ãããç¹ä¾¡åãæãã¦ããããã·ã£ã¼ãããã«ãã¾ããï¼ããä»åã¯ããããã移転ã»çµ±åã®ããã«éåºããPCNETç§èåä¸å¤®å£åºããã10å¹´éãããã¨ããããã¾ããã»ã¼ã«ãããç´¹ä»ãã¾ãããã¨ã«ãã¿è¦ããã§ã¹ãããªãã¬ã¼ã³ãããããããï¼ åãã¾ãã¦ã®äººããããã§ãªãã馴æã¿ã®ã客ãã¾ãããã«ã¡ã¯ï¼ç§èåã®PCNETã§åãã¦ããã·ã£ã¼ãããã§ããå æã«ãç¥ããããéããé§ åã®PCNETç§èåä¸å¤®å£åºã¯ãããããããªãã§ããPCNETã¢ããæ¬åºã¨ä¸ç·ã«ãªã£ã¦ããã£ã¨ã¹ãããªãåºã«ãªãããã«ãã¡ãã£ã¨ã®éã ããåºãéãããã¦ããã ããã¨ã«ãª
ããã¯ã§ãªãéè¡è¬å¸«ã¨ç¦å¿æå ¸ããã¬ã³ã¿ã¤ã³ã«ã¼ã (C)2017 ç¾å¤ªéã»ä¸å¶ãããï¼æ ªå¼ä¼ç¤¾ï¼«ï¼¡ï¼¤ï¼¯ï¼«ï¼¡ï¼·ï¼¡ï¼ãã¯ã§ãªã製ä½å§å¡ä¼ ã¤ã¡ã¼ã¸ãæ¡å¤§ æ±äº¬ã»AKIHABARAã²ã¼ãã¼ãºæ¬åºã§2æ14æ¥ãKADOKAWAã®ã©ã¤ãããã«ï¼æ¼«ç»ã¬ã¼ãã«ããåè¡ããã¦ããããã¯ã§ãªãéè¡è¬å¸«ã¨ç¦å¿æå ¸ããã¬ã´ãªã¼ã«ããããã¢ã¦ããã幼女æ¦è¨ã3ä½åã®ãã¬ã³ã¿ã¤ã³ã¤ãã³ããéå¬ãããã åå¾2æ30åã¨åå¾4æ30åã«ã¯ãåä½ã»ç¾å¤ªéæ°ãã¤ã©ã¹ãã»ä¸å¶ãããæ°ã«ããã©ã¤ãããã«ã§ã4æãããã¬ãã¢ãã¡åãæ±ºå®ãã¦ããããã¯ã§ãªãéè¡è¬å¸«ã¨ç¦å¿æå ¸ãï¼ãã¡ã³ã¿ã¸ã¢æåº«åè¡ï¼ã®ã¤ãã³ããéå¬ãã¡ã¤ã³ããã¤ã³ã®ã²ã¨ããã·ã¹ãã£ã¼ãã»ãã£ã¼ãã«ã®è¡£è£ ãçãã³ã¹ãã¬ã¤ã¤ã¼ããã·ã¹ãã£ã¼ããã«ãã¢ã»ãã£ã³ã¸ã§ã«ããªã£ã¨ã«ã»ã¬ã¤ãã©ã¼ãã®ã¡ãã»ã¼ã¸ãæ¸ããããæãä¸ããã¤ã©ã¹ã使ç¨ãã¬ã³ã¿ã¤ã³ã«ã¼ãã¨ãã§ã³ã¬ã¼
ä¸é¸ããã¦ã®å¢ããè½ã¡çããç§èåã«é¦´æãã ããã«ãè¦ããã«ã¼ã«ã¸ã¥ãã¢ããªã¼ãã³æéã確èªããã¨ãªãã¨åæ¥ç¥ã¯8ï¼00ããã®å¶æ¥ã¨ãããã¨ã§ãã¨ããæ¥ææ¥ã«ã«ã¼ã«ã¹ã¸ã¥ãã¢ã§æé£ãã¨ã£ã¦ã¿ãã é£ã¹å¿ãã®ãããã³ãã¼ã¬ã¼ã§ãè ¹ãã£ã±ã!? ä»åã¯å¹³æ¥ã¯æ9ï¼00ããã忥ç¥ã¯æ8ï¼00ããå¶æ¥ãã¦ããã«ã¼ã«ã¹ã¸ã¥ãã¢ç§èåã訪ãã¦ã¿ããæ¥ææ¥ã®ç§èåã¯æ©æã¯éãã¦ããåºèãå°ãªããããã«ã¯WiFiã¨é»æºã使ããåºèã¯å°ãªãä¸ã§ã«ã¼ã«ã¹ã¸ã¥ãã¢ç§èåã§ã¯ã»ã¼å ¨å¸ã«é»æºãæºåã¨å¾¹å¤æãã®ã¢ãã¤ã«å é»ãå¯è½ã ã ä»åã¯äºåç¥èã®ãªãç¶æ ã§å ¥åºãæããæ¸ ã ããæ°æã¡ã«ãªã£ã¦ãã¾ããããªå¥³æ§ã¹ã¿ããã®å¿å¯¾ãå¯ã¼ããé ã«å¿å°ããããã¦ãã¡ãã¥ã¼ã ãããåãããªãã®ã§ãªã¹ã¹ã¡ã伺ãã¨ãªãªã¸ãã«ã·ãã¯ãã¼ã¬ã¼ãè¯ããããã¨ãããã¨ã§ãã¡ãã®1/3LBãµã¤ãºã«ãããã§å¤±æããã®ããããã»ããã追å ããç¹ã
â»æ¬ã³ã³ãã³ãã¯ã¢ããç·ç ãå¶ä½ããç¬èªã³ã³ãã³ãã§ããã¾ãæ¬ã³ã³ãã³ãã§ã¯æ²è¼ããECãµã¤ãçããè³¼å ¥å®ç¸¾ãªã©ã«åºã¥ãã¦ææ°æãããã ããã¨ãããã¾ãã å°ãã¸/BS/CSã®8ãã£ã³ãã«åæé²ç»ã«å¯¾å¿ãããUSBæ¥ç¶ã®å¤ä»ãTVãã¥ã¼ãã¼ã¦ããããPX-Q3U4ããããã¬ã¯ã¹ããçºå£²ã¨ãªã£ãã 主ãªä»æ§ã¯ãæ¬ä½ãµã¤ãºã134ï¼å¹ ï¼Ã87ï¼å¥¥è¡ãï¼Ã21ï¼é«ãï¼mmãæ¥ç¶ã¤ã³ã¿ã¼ãã§ã¤ã¹ã¯USB 2.0ãã¢ã³ãã端åãå°ä¸æ³¢ãã¸ã¿ã«ç¨Ã1ãBS/CSãã¸ã¿ã«ç¨Ã1ãã¾ããæ¬ä½åé¢ã«ã¯ICã«ã¼ããªã¼ãã¼ãæè¼ããã対å¿OSã¯Windows 10/8.1/8/7ï¼32bit/64bitï¼ãä»å±åã¯ãUSBã±ã¼ãã«ãACã¢ããã¿ããªã¢ã³ã³ãªã©ããªããè¦è´ã»é²ç»ã½ãããBCASã«ã¼ãã¯ä»å±ããªãç¹ã«ã¯æ³¨æãå¿ è¦ã ã ä¾¡æ ¼ã¯ãä¸è¨ã®ã¨ããã ãã¬ã¯ã¹ãPX-Q3U4ã 29,800åï¼ç¨è¾¼ï¼ï¼ãã½ã³
â»æ¬ã³ã³ãã³ãã¯ã¢ããç·ç ãå¶ä½ããç¬èªã³ã³ãã³ãã§ããã¾ãæ¬ã³ã³ãã³ãã§ã¯æ²è¼ããECãµã¤ãçããè³¼å ¥å®ç¸¾ãªã©ã«åºã¥ãã¦ææ°æãããã ããã¨ãããã¾ãã USBæ¥ç¶ã®å ¥åè£ ç½®ãèªä½ã§ããã¹ã¤ããã±ã¼ãã«ãRI-SWCBãã·ãªã¼ãºãã ã«ã¼ãã¢ã¼ã«ããçºå£²ä¸ã ã ã©ã¤ã³ã¢ããã¯ã1ã¹ã¤ããç¨ã¢ãã«ãRI-SWCB1ãã3ã¹ã¤ããç¨ã¢ãã«ãRI-SWCB3ãã6ã¹ã¤ããç¨ã¢ãã«ãRI-SWCB6ãã®3ã¢ãã«ã ãRI-SWCBãã·ãªã¼ãºã¯ãã¦ã¼ã¶ã¼ãå¥éç¨æããã¹ã¤ãããæ¥ç¶ãããã¨ã§ãUSBæ¥ç¶ã®å ¥åè£ ç½®ãèªä½ã§ããã¹ã¤ããã±ã¼ãã«ã ãã®ã±ã¼ãã«ãPCã«æ¥ç¶ããã¨USBãã¼ãã¼ãã®ããã«èªèãããä»å±ã®è¨å®ã½ããã§å²ãå½ã¦ãæä½ãè¡ããã¨ãããã®ã§ãã¹ã¤ããã«ã¯ãã¼ãã¼ãããã¦ã¹æä½ããã«ãã¡ãã£ã¢ãã¼ãã²ã¼ã ãããã®æ©è½ãå²ãå½ã¦ãããã¨ãã§ããã è¨å®ã¯ã±ã¼ãã«ã®USBã³ãã¯ã¿å é¨ã«
ã¢ãã¥ããã¹ãã·ã£ãªã¹ãã®ããã®æ å ±ãã¼ã¿ã«ãMONOistãã§æ²è¼ããã主è¦äººæ°é£è¼ï¼ç¹éè¨äºããèªã¿ãããPDFå½¢å¼ã®é»åããã¯ã¬ããã«åç·¨éãã¦ãå±ããããã¨ã³ã¸ãã¢é»åããã¯ã¬ããããä»åã¯ãç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼Convolutional Neural Networkï¼CNNï¼ã®ä½¿ãæ¹ãåããã¾ããï¼ãããç´¹ä»ãã¾ãã ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ä½¿ãæ¹ãåããã¾ããï¼ ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼CNNï¼Convolutional Neural Networksï¼ã¨ã¯ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®é²åã«ããã䏿®µéã§ããããã¸ã§ã³ããã»ãã·ã³ã°ãææ¸ãæåèªèã声ç´åæããããã£ã¯ã¹ããã©ã¤ãã¼ã¢ã·ã¹ã¿ã³ã¹ã·ã¹ãã ãªã©ã®ã¢ããªã±ã¼ã·ã§ã³ã§éè¦ãªæè¡ã«ãªãã¤ã¤ããã¾ãã åºç¯ãªã¨ã³ããããã·ã¹ãã ã«é©ç¨ãããå¯è½æ§ãé«ããããããåºç¯ãªã¢ããªã±ã¼ã·ã§ã³ã®ææ°ç¶æ³ã«é
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ã¯ããã« æè¿ãç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯(CNN)ãç¨ããèªç¶è¨èªå¦çãæ³¨ç®ãéãã¦ãã¾ããCNNã¯RNNã¨æ¯ã¹ã¦ä¸¦ååãããããã¾ãGPUã使ããã¨ã§ç³ã¿è¾¼ã¿æ¼ç®ãé«éã«è¡ããã®ã§ãå¦çé度ãå§åçã«éãã¨ããå©ç¹ãããã¾ãã ãã®è¨äºã¯ãèªç¶è¨èªå¦çã«ãããç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãç¨ããã¢ãã«ãã¾ã¨ãããã®ã§ããCNNãç¨ããèªç¶è¨èªå¦çã®ç ç©¶ã®é²æ©ã俯ç°ããã®ã«å½¹ç«ã¦ã°å¹¸ãã§ãã æã®åé¡(è©å¤åæã»ãããã¯åé¡ã»è³ªåã¿ã¤ãåé¡) Convolutional Neural Networks for Sentence
èæè£åæ°ã¯ãææ°ä½ãã¨ã¬ã¡ã³ã¿ã«ã»ãã¼ãºããã¯ãããããã¼ã¸ãã«ã»ãªãã¬ã¼ã·ã§ã³ãã·ãªã¼ãºããã»ã«ãã»ã¯ã©ããã»ã¯ã¼ã«ããã·ãªã¼ãºãªã©ã®å°èª¬ã§ç¥ãããä½å®¶ããã ããåå£ä¹±è-ONLINE-ãã®ä¸ç観ç£ä¿®ãèæ¬ã«åå ããã²ã¼ã ãã¶ã¤ãã¼ã§ããããå¤ãã¯ã髿©åå¹»æ³ã¬ã³ãã¬ã¼ãã»ãã¼ããã¨é¢ããç¡åä¸ç観ãªã©ãã追ãããç¶ãã¦ãããã¡ã³ãå°ãªããªãã¯ãã ã éå»ã®ãã¤ã¼ããè¦ãã¨ãå°èª¬ã»èæ¬ãªã©ã®å·çã«ããã¡ã©ãã·ãªã¼ãºãå©ç¨ãã¦ããããã¼ã¦ã¼ã¶ã¼ã®ãããªã®ã ããã¯ããã¦ããã¡ã©ãDM200ã§ãããªã«ã稼ããã®ã ãããï¼ ä½å®¶ããã«æ°åä¸ç¨¼ãããã¨è¨ããããé åã¯ã©ããªç¹ãªã®ãï¼ããããæ°ã«ãªããèæè£åæ°ã«ã¤ã³ã¿ãã¥ã¼ããã¦ããã ããã®ã ã ãç´¯è¨ã§5000ä¸åãããå²ãã£ãï¼ ãã³ã°ã¸ã ããããããã¨ãã ââ Twitterä¸ã§ãæ°åãã¡ã©ãããã§5,000ä¸åãäºãä¸å¹´ã§ç¨¼ããããã
auã¨ã¿ã«ã©ããã¼ã¯2æ1æ¥ãããauÃTRANSFORMERS PROJECTããå§åããã¡ã³ãã£ã³ã°ãµã¤ããMakuakeãã§ãã©ã³ã¹ãã©ã¼ãã¼3種ãauã®å代ãINFOBARãã®ãã¶ã¤ã³ã«å®å ¨å¤å½¢ããæºå¸¯é»è©±åå¤å½¢ç©å ·ã®è²©å£²ç³è¾¼åä»ãéå§ããã 販売æéã¯2æ1æ¥ãã3æ30æ¥ã¾ã§ã§ãä¾¡æ ¼ã¯ãINFOBAR OPTIMUS PRIMEï¼NISHIKIGOIï¼ãåä½ãç¨è¾¼5400åããINFOBAR BUMBLEBEEï¼ICHIMATSUï¼ããINFOBAR MEGATRONï¼BUILDINGï¼ãã¨ã®3ä½ã»ããã¯ç¨è¾¼1ä¸6200åã§ã9ææ«çºéäºå®ã
éãã¨ããã¹ã¼ããç¾ãããæµ·èãç´°åãã¡ã³ããã¨ãã¨ãã®ãã£ã¼ã·ã¥ã¼ã«ãããããããã®æ°´èã¨ã·ã³ãã«ãªå ·æãæåã®åããããè¨ã£ã¦ãã¾ãã¨ååã§ãããç§ã¯å¡©ã©ã¼ã¡ã³ããã¡ã°ã好ã¿ã§ããï¼ãåºæ±ããã£ã±ãã§åé£ã®ããã§ããå¥ãè¡ããªããã¸ã¥ã¢ã«ã®ã©ã¼ã¡ã³ãããããªã«ããããæãããããªãã¦æãããã¾ããã§ãããã©ã¼ã¡ã³ã®å¥¥æ·±ããèº«ã«æã¿ã¾ãã ã¹ã¼ãã¯ãåç©ç³»ã®ç²¾æ¹¯ï¼æ¿ãã®ãªãéæãªã¹ã¼ãï¼ã¨éä»ç³»ã®ãã¬ã³ããè±ãé¶ããåºãã³ã¯ã«éä»ã®é¢¨å³ããã©ã³ã¹ããèåãã¦ããã£ãããã¤æ¨å³ãã£ã·ããªä»ä¸ãããä¸ç´°éººã¯çã¿ãæããã»ã©å³ãã£ãããã¹ã¼ããå ·æã麺ã«ãã絡ã¿é£æãããããã®ã¾ã¾ã§ååãã£ã¨é£ã¹ã¦ããããæ°ããã¾ãã ããããç²ãªä¸çãã¯ãããã³ã°ã«ããã ããããã¡ãã¥ã¼è¡¨ã«ã¯ãã©ã¼ã¡ã³ãã¨ã«ãããããã®ãããã³ã°ãã®è¨è¼ãããã®ã§ããå¡©ã®ãªã¹ã¹ã¡ã¯ãããã®ï¼200åããå³çåï¼100åãã
触æåã²ã¼ã ã³ã³ããã¼ã©UnlimitedHandãWT2017ãã¡ã¤ããªã¹ãã«é¸åºãããã¼ Arduino AtHeart, Amazon LaunchPad ã«ãåå ãä¸çã«åãã¦è²©å£²éå§ 2017å¹´2æ7æ¥~2æ8æ¥ã«ãã¤ã ãã¥ã³ãã³ã§éå¬ãããWT2017(Wearable Technologies Conference 2017)ã«ã¦ãUnlimitedHandããã¡ã¤ããªã¹ãã«é¸åºããã¾ãããä»åãã¨ã¼ãããã§åãã¦UnlimitedHandãå±ç¤ºããã¾ããåæã«ãArduino AtHeartãAmazon LaunchPadã«ãåå ããæµ·å¤ã®ã¦ã¼ã¶ã¸è²©è·¯ãæ¡å¤§ãã¾ãããããã«ããä¸çä¸ã®éçºè ãæ´»ç¨ãããããªãã¾ãã WT2017ãã¡ã¤ããªã¹ãã«é¸åº! 2017å¹´2æ7æ¥~2æ8æ¥ã«ãã¤ã ãã¥ã³ãã³ã§éå¬ãããWT2017(Wearable Technologies C
ãã¬ã¹ã¿ã¤ã 12ï¼05 â 12ï¼45 [40å]ãã³ã³ï¼ï¼ï¼å¨å¹´ãããªãã®ç¥ã£ã¦ããã³ã³ãããªãã®ç¥ããªããã³ã³ é¿é¨ ç§ä¹ 12ï¼55 â 13ï¼35 [40å]NIKKORã¬ã³ãºã§åãåããç¾ãã山岳ã®ä¸ç èæ± å²ç· 13ï¼45 â 14ï¼35 [50å]KeyMission360ãå¤ãã360Â°ã®æ®å½±ä¸ç ä¸ç° æå¸ 14ï¼45 â 15ï¼25 [40å]çµ¶æ¯JAPANï¼æ ããD810 æé ä½ä½³ 15ï¼35 â 16ï¼15 [40å]ã翼ããæ´ãD500ã®åã-è¶ æé NIKKORã§éé³¥ã»é£è¡æ©æ®å½±- ä¸é èå¿ 16ï¼25 â 17ï¼05 [40å]NIKKORã¬ã³ãºã§åãåããç¾ãã山岳ã®ä¸ç èæ± å²ç· 17ï¼15 â 17ï¼55 [40å]ééåçã¸ã®ãã©ã¤ããï½D500ã§æé«ã®ç¬éãããããï½ ä¸äº ç²¾ä¹ ãã¬ã¹ã¿ã¤ã 12ï¼05 â 12ï¼40 [35å]Nikon
ä»Dassault Systemes社SOLIDWORKSãã©ã³ãCEOã®Gian Paolo Bassiæ°ã¯å社ã®ã¤ãã³ããSOLIDWORKS WORLD 2017ãï¼2017å¹´2æ5ï½8æ¥ãç±³Los Angeles Convention Centerï¼ã§ã®åºèª¿è¬æ¼ã¨è¨è ä¼è¦ã§ãä»å¾CADï¼Computer Aided Designï¼ã¯è¨è¨è ãæ¯æ´ï¼aidï¼ããã¨ãããããè¨è¨è ã®è½åãæ¡å¼µã§ããComputer Augmented Designã§ããã¹ãã§ããããå®ç¾ãããã¼ã«ã®éçºãé²ãã¦ããããªã©ã¨è¿°ã¹ãããã®ããã«å ã®ææã«ã人工ç¥è½ï¼AIï¼ã®1ã¤ã§ããæ©æ¢°å¦ç¿ãå¿ç¨ããæ©è½ãçãè¾¼ãèãã示ããã
ãã»ãã¥ãªãã£ã«å¯¾ããéè¦æ§ã¯çè§£ããããã©ãç¨èªãé£ããã¦ãã¨ãã声ãèããã¨ãããããã¾ãããããªæ¹ã«ããä»ã ããå¦ã¶ï¼ãã¨é¡ãã¦ãé£è¼ã§ã»ãã¥ãªãã£ã®é »åºç¨èªã解説ãã¾ãã第42åã¯ãããã·ã³ ã©ã¼ãã³ã°(æ©æ¢°å¦ç¿)ãã«ã¤ãã¦ã§ãã ãã·ã³ ã©ã¼ãã³ã°(æ©æ¢°å¦ç¿ãMachine Learning)ã¯ã人工ç¥è½(Artificial Intelligence, AI) ã«ãããä¸ã¤ã®åéã§ãããã®æ°å¹´ãAIããã³ãã·ã³ ã©ã¼ãã³ã°ã«é¢ããç ç©¶ãæ¥éãªæé·ãéãããã¾ãã¾ãªä¼æ¥ã»çµç¹ããã·ã³ ã©ã¼ãã³ã°ãå©ç¨ãã製åããµã¼ãã¹ãæä¾ãã¦ãã¾ãã2016å¹´3æã«ã¯ãGoogle DeepMind社ãéçºããAlphaGoãå²ç¢ã®å¯¾å±ã§ãããæ£å£«ã«åã¤ãªã©ãä¸çä¸ã§å¤§ããªè©±é¡ã¨ãªãã¾ããã ãã®èæ¯ã«ã¯ãã¤ã³ã¿ã¼ãããã®æ®åã«ãããå¦ç¿ç¨éã«å©ç¨ã§ããã¤ã¡ã¼ã¸ãããã¹ããã¼ã¿ãªã©ãå ¥æããã
è¿å¹´ï¼é²åãç¶ããæ å ±ã»è¨æ¸¬æè¡ã¯ï¼ããã°ãã¼ã¿ï¼ã¯ã©ã¦ãï¼æ©æ¢°å¦ç¿ãªã©ã®æè¡ãçµã³ã¤ãï¼æ°ããã¢ããªã±ã¼ã·ã§ã³ã»ãµã¼ãã¹ãçã¾ãã¦ãã¾ãï¼ãããã®æ å ±éä¿¡æè¡ã®é©æ°ã¯ç¤¾ä¼ãçæ´»ã®ããæ¹ã«åçãªå¤åããããï¼ç¾ä»£ã«ããã¦ï¼å¤ãã®åéã§æ°ãã大ããªæµããå½¢æãããã¨ãã¦ãã¾ãï¼ ä¸æ¹ï¼ãããã®æ°ããæè¡ã¯ãã¼ã¿ä¾åã§ããç¹ã¯å¦ããï¼ã»ã³ã·ã³ã°ããã¼ã¿è¨æ¸¬ããã®éè¦æ§ãå¢ãã¦ãã¦ãã¾ãï¼ããã§ä»åã¯ICTã¤ããã¼ã·ã§ã³ã»ããã¼ã¨é¡ãï¼å»ºç¯é³é¿åéã«ãããè¨æ¸¬ã»è§£æã«é¢ããã»ããã¼ãéå¬ãã¾ãï¼ã¾ãï¼ã¤ã®ãªã¹ã®å¤§å¦ã«ãããç ç©¶å 容ãç ç©¶ã¹ã¿ã¤ã«ï¼çå¦ã«ã¤ãã¦ãè¬æ¼é ãäºå®ã§ãï¼
å æ¥ããªã³ã©ã¤ã³å¦ç¿ãµã¤ãCourseraã®æ©æ¢°å¦ç¿ã³ã¼ã¹ "Machine Learning by Stanford University" ãä¿®äºãã¾ããã Machine Learning - Stanford University | Coursera (æåã®ã¨ã³ãã£ã³ã°åç») ãã ãæ©æ¢°å¦ç¿ã«èå³ããã£ã¦æ å ±åéãå§ãã¦ã人ã«ã¨ã£ã¦ããCourseraã®æ©æ¢°å¦ç¿ã³ã¼ã¹ãããããã§ãããã¨ãã話㯠ãã¯ããç¥ã£ã¦ã¾ãã ã¨ããæãã§ã¯ãªãã§ããããã åããããªæãã§ã幾度ã¨ãªã人ãè¨äºã«åã³ã¼ã¹ãè¦ããããããã¤ã¤ããã¶ã2å¹´ãããã¹ã«ã¼ãç¶ãã¦ããã¨æãã¾ãã ãããç´2ã¶æåãã²ãããªãã£ããããæ¬è¬åº§ãå§ãã¦ã¿ã¦ããã¯ãè©å¤éãæé«ã ã£ãã¨æãã¨åæã«ãåã¨åããããªæãã§ãã®ã³ã¼ã¹ãè¯ããããã¨ç¥ããªãããã¹ã«ã¼ãç¶ãã¦ã人ã¯å¤ãããããªããã¨æãã¾ãã¦ãï¼ããã£ãããª
ãµã¤ããããã·ã¹ãã æ ªå¼ä¼ç¤¾ï¼æ¬ç¤¾ï¼æ±äº¬é½ã代表åç· å½¹ 社é·å·è¡å½¹å¡ï¼ç°ä¸ 馿ã以ä¸ããµã¤ãããããï¼ ã¯ã妿 ¡æ³äººæå大å¦ï¼ä»¥ä¸æå大å¦ï¼ã¨å ±ååºé¡ããå è¦é¡è¨ºæã®æ°ææ³ã«ã¤ãã¦ç¹è¨±ãæç«ãããã¨ããç¥ãããããã¾ããæ¬ç¹è¨±ã¯æå大å¦ã»ãµã¤ããããã¨ã®å»å·¥ç£é£æºäºæ¥ããç³è«ãããç¹è¨±ã¨ãªãã¾ãã ==================================== æ©æ¢°å¦ç¿ã«ããç ç診æäºæ¸¬ãæ¯æ´ ==================================== 徿¥ã®å è¦é¡ãããæ¡å¤§æ¯çãå¤§å¹ ã«åä¸ãããè¶ æ¡å¤§å è¦é¡ï¼ECï¼Endocytoscopyï¼ã®åºç¾ã«ãããæ¶å管ç²èã«ãããç´°èã»æ ¸ã®ãªã¢ã«ã¿ã¤ã 観å¯ãå¯è½ã«ãªããç ç診æã«å¹æµããè¶ é«ç²¾åº¦ã®å è¦é¡è¨ºææ¯æ´ãå¯è½ã«ãªãã¾ããã åæã«EC ã«ãã診æã¯åå¾ããç»åã®è§£éã«å·¦å³ãããããçç·´è ã診æãè¡ãããã°ãªãã¾
AIãæ©å¨è¨è¨ã®èª²é¡è§£æ±ºã«å½¹ç«ã¤ï¼ æ©æ¢°å¦ç¿ï¼ãã·ã³ã©ã¼ãã³ã°ï¼ã¯ãé»åæ©å¨ã®è¨è¨ã«ããã課é¡ãè§£æ¶ã§ããã ãããã9社ã®ä¼æ¥ã¨3ã¤ã®å¤§å¦ãåå ãããCenter for Advanced Electronics through Machine Learningï¼CAEMLï¼ããããã®åãã«å¿ããã¹ã調æ»ç ç©¶ãéå§ããããã®ç ç©¶ã¯ãæ°ããªæè¡ã®æ´»ç¨ã«åãã¦æ¥çã宿½ããåãçµã¿ã®ä¸ç°ã§ããã CAEMLã®ãã£ã¬ã¯ã¿ãåããElyse Rosenbaumæ°ã¯ãããã®ç ç©¶ã¯ãï¼å¤ãã®æè¡ã¨åæ§ã«ï¼ã¨ããæ¥ã®åå¾ãã³ã¼ãã¼ã·ã§ããã§ã®ä¼è©±ããã£ããã«å§ã¾ã£ããã¨è©±ãã Rosenbaumæ°ã¯ã2017å¹´1æ31æ¥ï½2æ2æ¥ã«ç±³å½ã«ãªãã©ã«ãã¢å·ãµã³ã¿ã¯ã©ã©ã§éå¬ãããé»åæ©å¨è¨è¨æè¡ã®å¦ä¼ãDesignCon 2017ãã§è¡ããããMachine Learning and its Applica
ä¸çä¸ã®çæ´»åºç¤ããã¸ãã¹ã®ä¸å¿ã«ãªãã¤ã¤ããã¤ã³ã¿ã¼ãããã¯åæã«ãæ§çè¡çºããæ´åã¾ã§ããããéæ¿ãªã³ã³ãã³ãã®æ¸©åºã¨ãªã£ã¦ããããã§ã«Facebookãªã©å¤§æãã©ãããã©ã¼ã ã¯ãã¦ã¼ã¶ã¼ãæç¨¿ããç»åãåç»ãçºè¨ããã§ãã¯ããç£è¦æ©è½ãå±éæ¸ã¿ã ã ã¢ã«ã´ãªãºã ããã®ç£è¦ä½æ¥ã®å¤§é¨åãèªååãã䏿¹ã§ããã¯ãæçµå¤æã¯äººéã®ç®ã«ãã£ã¦ä¸ããã¦ããã®ãéä¾ã ã ç£è¦ã¹ã¿ããã®å¿ççè² æ ã¯è¨ãç¥ããªãã¯ãã ãæ³åãã¦ã¿ã¦æ¬²ãããã¤ã³ã¿ã¼ãããã«èå»¶ãéã ããã²ãããæ¢ãç¶ããä»äºãã 2016å¹´æ«ãäºäººã®ãã¤ã¯ãã½ããå 徿¥å¡ãããã¤ã¯ãã½ãããæè¨´ããã訴ããèµ·ããããã³ãªã¼ã»ã½ãã¨ã°ã¬ãã°ã»ãã©ã¦ã¢ã¼ãã®ä»äºã¯ãéæ³ã®å¯è½æ§ã®ããç»åãå¤å¥ããå ¨ç±³è¡æ¹ä¸æã»è¢«æ¾åå ç«¥ã»ã³ã¿ã¼ï¼NCMECï¼ã«éå ±ããããªã³ã©ã¤ã³ã»ã»ã¼ããã£ã»ãã¼ã ã®ä½æ¥ã ã£ãããå½¼ãã¯æ³åãçµ¶ããæ®é ·ãªç»åãè¦ç¶ãã
表é¡ã®éããèªèº«ã§æ§ç¯ããWebãµã¼ãã«SSLãçµã¿è¾¼ãã ããã©ã®æå·ã¹ã¤ã¼ã(ï¼)æå·ã¢ã«ã´ãªãºã (ï¼)ã«å¯¾å¿ãã¦ããã®ãï¼ãå¤é¨ãã確èªãããã â ç°å¢ nmap 7.40 â nmap ä¸è¨ã³ãã³ãã§åå¾ãããã¨ãã§ããã nmap -v --script ssl-enum-ciphers -p 443 [domain] ã¨ãããã¡ã¤ã³ã§ã¯ä¸è¨ãåå¾ã§ããã PORT STATE SERVICE 443/tcp open https | ssl-enum-ciphers: | TLSv1.0: | ciphers: | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - unknown | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA - unknown | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
ããã«ã¡ã¯ãå¦çã¢ã³ããµãã¼ã®æ«»äºã§ãï¼ â»ãªã¼ããã¹ã¯Fusion360å¦çã¢ã³ããµãã¼ã«ã¤ãã¦ã¯ãã¡ããã覧ä¸ããã http://www.fabcafe.com/tokyo/blog/fusion360_ambassador_kickoff?lang=ja ä»åã¯ã2017å¹´1æ20æ¥ã«è¡ãããæ±æµ·å¤§å¦ã®ã¯ã¼ã¯ã·ã§ããã«ã¤ãã¦ãã®æ§åããä¼ããã¾ãï¼ ã¿ãªããã3Dã¨ã¯ã©ããªãã®ããåç¥ã§ããï¼èå³ããããã§ãææ¦ãã¦ã¿ãæ©ä¼ããªãâ¦ä»åã¯ãããªæ¹éã¸åããã¯ã¼ã¯ã·ã§ããã§ããï¼ ããã«ï¼ä»åã®ã¤ãã³ãã§ä¸å³éã£ãã®ã¯ä¸å½çºã®VRã´ã¼ã°ã«ãPico1ããä½é¨ã§ãããã¨ã§ãï¼Pico1ã¨ã¯ç»åå¦çã¢ã«ã´ãªãºã ã¨å 妿¹å¼ã¨ã®é£åã«ãã£ã¦ãç»åã®æªã¿ãè²åå·®ã®åé¡ãæä½éã«æããããç´ æ´ãããè¦è¦ä½é¨ãããã ãã¾ããPico1ã¯ã¹ãã¼ããã©ã³ããã®ã¾ã¾è£ çããBluetoothæ¥ç¶ãããã¨
ATOK 2017 for Windows ï¼»ãã¬ãã¢ã ï¼½ ããã£ã¼ãã©ã¼ãã³ã°ãæ¡ç¨ã®æ°ã¨ã³ã¸ã³ã§ãããèªç¶ãªæ¥æ¬èªå¤æãå®ç¾ãããATOKãã®æ°ãã¼ã¸ã§ã³ 夿ã¨ã³ã¸ã³ãå·æ°ããâããã¾ã§ä»¥ä¸ã«èªç¶ãªæ¥æ¬èªå¤æãå®ç¾âãããATOKãã·ãªã¼ãºã®æ°ãã¼ã¸ã§ã³ãå ¥åæ¯æ´æ©è½ã®å¼·åã飿ºé»åè¾å ¸ã®æ¡å ãå³ãããããATOK for Windowsãã¯ãé«ãå¤æç²¾åº¦ãå¤å½©ãªå ¥åã»å¤ææ¯æ´æ©è½ãªã©ã«å®è©ã®ããâå®çªâ髿§è½æ¥æ¬èªå ¥åã·ã¹ãã ãæ°æåã®å ¥åã§æé©ãªèªå¥ãæ¨æ¸¬ããã¦ã¼ã¶ã®ææ¸ä½æå¹çãé«ãã¦ããããã¿ã¤ãæ°ãå ¥åãã¹ã®æ°ãªã©ããã¦ã¼ã¶ã®ç²å´åº¦ãæ¤ç¥ãã伿¯ãå§ãã¦ãããããªãã¬ãã·ã¥ããããæè¼ãããæ°ãã¼ã¸ã§ã³ã2017ãã§ã¯ã10å¹´ã¶ãã«å¤æã¨ã³ã¸ã³ãå·æ°ãããATOKãã£ã¼ãã³ã¢ã¨ã³ã¸ã³ãã¸ã¨é²åãã¦ã¼ã¶ã®èª¤æä½ãèª¤å ¥åã¾ã§ã«ãã¼ãã¦ããããã¤ã³ãããã¢ã·ã¹ããã使ãããããªã£
æ ªå¼ä¼ç¤¾ã¡ã¤ãããï¼æ±äº¬é½æ°å®¿åºã代表åç· å½¹ï¼ææ¬çå¾ï¼ï¼ä»¥ä¸ãã¡ã¤ããããï¼ã¯æ ªå¼ä¼ç¤¾ã¢ããã¦ã¹ã¤ã³ã¿ã¼ãã·ã§ãã«åä¼ç¤¾ã®æ ªå¼ä¼ç¤¾ã¢ããã·ã§ã«ã¿ï¼æ±äº¬é½æ¸è°·åºã代表åç· å½¹ï¼æ¨æä¿è¡ï¼ï¼ä»¥ä¸ãã¢ããã·ã§ã«ã¿ãï¼ãéå¶ãããªã³ã©ã¤ã³ã¹ãã¢ãAT-SCELTAãã«ããã¦ãã¡ã¤ããããå±éããã¢ãã¬ã«ECåããµã¤ãºã¬ã³ã¡ã³ãã¨ã³ã¸ã³ãunisizeï¼ã¦ããµã¤ãºï¼ãã®æä¾ã2æ7æ¥ï¼ç«ï¼ããéå§è´ãã¾ãã â ã¡ã¤ããããæä¾ããã¢ãã¬ã«ECãµã¤ãåããµã¤ãºã¬ã³ã¡ã³ãã¨ã³ã¸ã³ãunisizeã unisizeï¼http://makip.co.jp/unisizeï¼ã¯ãããã§æ´æãè²·ãã¨ãã«ããã身ä½ã«åã£ããµã¤ãºãæ¨å¥¨ãããµã¤ãºã¬ã³ã¡ã³ãã¨ã³ã¸ã³ã§ããå½å å¤ã®æ´æãã©ã³ãã対象ã¨ããå¤éãªæ´æãµã¤ãºãæããå ¥åãããã¦ã¼ã¶ã¼ã®èº«ä½æ å ±ãç¹å¾´ãå ã«æé©ãªãµã¤ãºãæ¨å®ããç¬èªã®ã¢ã«ã´ãªãºã ã§ã¬ã³ã¡ã³ã
è¿å¹´ãèªç¥ç§å¦ãå¿çå¦ãå«ãæ§ã ãªã¢ããã¼ãããã人éã»ããããéã®ã³ãã¥ãã±ã¼ã·ã§ã³ã®ã£ãããè§£æ¶ããæ¹æ³ã模索ããã¦ãããæ¨å¹´æ«ãç±³ã«ãªãã©ã«ãã¢å·ãµã³ãã©ã³ã·ã¹ã³å¸ã«ã¦éå¬ãããããããã®ã¢ã«ã´ãªãºã åºç¤ç ç©¶ã«é¢ããã¯ã¼ã¯ã·ã§ããï¼Workshop on the Algorithmic Foundations of Roboticsï¼ã«åºå¸ããã³ãã©ã大å¦ã®ãã¹ã»ãããã¼ï¼Ross Knepperï¼ææããã³å士å¦çã¯ã人éãããããã¨äºãã«ã³ãã¥ãã±ã¼ã·ã§ã³ãã¨ãåãã«ãããéè¦ãªä¿¡é ¼é¢ä¿ã®æ§ç¯æ¹æ³ãææ¡ããã ãããã¼ææãã¯äººéã»ããããéã®ã¹ãã¬ã¹ã¬ã¹ãªã³ãã¥ãã±ã¼ã·ã§ã³ã«ä¸»ç¼ãç½®ãã¦ããããããå®ç¾ããããã®ç¬¬ä¸æ©ã¨ãã¦ãè¾¼ã¿åã£ã人éç°å¢ã§ã®ããããã®æ¹åãã¿ã¼ã³ã«é¢ããç ç©¶ã«çæãããã¨ãçºè¡¨ããã人éã®å¨ãã«ãç§»åä¸ã®ãããããåå¨ããã¨ããã±ã¼ã¹ãæ³å®ããã®ã±ã¼ã¹ã«
ã»ã¼ã«ä¸ã®Macã¢ã㪠Duplicate Sweeper ã«ãã´ãª: ã¦ã¼ãã£ãªãã£ ä¾¡æ ¼: ï¿¥720 â ï¿¥240 (è¨äºå ¬éæ) é«åº¦ãªæ¤ç´¢ã¢ã«ã´ãªãºã ãå®è£ ãããã¯ãã«ãªéè¤ãã¡ã¤ã«æ¤ç´¢ãã¼ã«ã ä¸è¦ç®æã®é¤å»ï¼åçã®ä¿®æ£ Super Eraser Pro ã«ãã´ãª: åç ä¾¡æ ¼: ï¿¥3,600 â ï¿¥240 (è¨äºå ¬éæ) åçã®ä¸è¦ç®æãé¤å»ãããä¿®æ£ããããããã¨ãã§ããã°ã©ãã£ãã¯ã¢ããªã Layout Lab - Templates for Keynote ã«ãã´ãª: ã°ã©ãã£ãã¯&ãã¶ã¤ã³ ä¾¡æ ¼: ï¿¥3,600 â ï¿¥240 (è¨äºå ¬éæ) 72åã®Keynoteç¨ãã¼ããåé²ãããã³ãã¬ã¼ãã¢ããªã Mail Stationery Smart ã«ãã´ãª: ã°ã©ãã£ãã¯&ãã¶ã¤ã³ ä¾¡æ ¼: ï¿¥2,400 â ï¿¥120 (è¨äºå ¬éæ) Apple Mailã®ããã®æ´ç·´ããã
ECzine Dayï¼ã¤ã¼ã·ã¼ã¸ã³ã»ãã¤ï¼ã¨ã¯ãECzineã主å¬ããã«ã³ãã¡ã¬ã³ã¹åã®ã¤ãã³ãã§ããå¤åã®æ¿ããECæ¥çããã®æ¥ã«ãªã¢ã«ãªå ´ã«ãè¶ãããã ããã¨ã§ããã¬ã³ãããããã¯ã¹ãå¹ççã«çæéã§ç¶²ç¾ ããæ©ä¼ã¨ãã¦ããã ããã°å¹¸ãã§ãã
ãé ä½ãä¸ãããã¨ããã ããã®ãã¼ã¸ãè½ã¨ã夿´ãæ¥æ¬èªæ¤ç´¢ã ãã対象ã¾ããä»åã®æ¤ç´¢çµæã®æ¹åã¯ã©ããããã®ãªã®ã§ãããããã°ã¼ã°ã«ã®å ¬å¼ããã°ã«æ¸ããã¦ããæ¬¡ã®æç« ãããããããã§ãããï¼å¼·èª¿ã¯çè ã«ããï¼ã ä»é±ãã¦ã§ããµã¤ãã®å質ã®è©ä¾¡æ¹æ³ã«æ¹åãå ãã¾ãããä»åã®ã¢ãããã¼ãã«ãããã¦ã¼ã¶ã¼ã«æç¨ã§ä¿¡é ¼ã§ããæ å ±ãæä¾ãããã¨ããããæ¤ç´¢çµæã®ããä¸ä½ã«èªãã¼ã¸ã表示ããããã¨ã«ä¸»ç¼ãç½®ããå質ã®ä½ããµã¤ãã®é ä½ãä¸ããã¾ãããã®çµæããªãªã¸ãã«ã§æç¨ãªã³ã³ãã³ããæã¤é«å質ãªãµã¤ãããããä¸ä½ã«è¡¨ç¤ºãããããã«ãªãã¾ãã ä»åã®å¤æ´ã¯ãæ¥æ¬èªæ¤ç´¢ã§è¡¨ç¤ºãããä½å質ãªãµã¤ãã¸ã®å¯¾çãæå³ãã¦ãã¾ãã ã¤ã¾ãããå質ãä½ãï¼ã¨ã°ã¼ã°ã«ã夿ããï¼ã«ãããããããã°ã¼ã°ã«ã®è©ä¾¡ã·ã¹ãã ããã¾ãå©ç¨ãã¦ãããµã¤ãããæ¤ç´¢çµæã®ä¸ä½ã«è¡¨ç¤ºãããªãããã«ãããã¨ãããã¨ã§ãã ãã®å¤æ´ã¯ã
5æã«æ±ºé¸æç¥¨ãè¡ãããäºå®ã®ä»å¤§çµ±é 鏿ã«åãã¦ãç±³Facebookã¨ç±³Googleã¯2æ6æ¥ï¼ç¾å°æéï¼ããã©ã³ã¹ã«ãããããããã®èå½ãã¥ã¼ã¹å¯¾çã®åãçµã¿ãçºè¡¨ãããFacebookã¯Googleã®åãçµã¿ã«ãååããã æ¨å¹´ã®ç±³å¤§çµ±é 鏿ã§ã¯ãFacebookã¨Googleãããããã®ãµã¼ãã¹ã§æ¡æ£ããèå½ãã¥ã¼ã¹ãé¸æçµæã«å¤§ããªå½±é¿ãä¸ããã¨ãã¦æ¹å¤ãé«ã¾ã£ãããããåãã両è ã¯èå½ãã¥ã¼ã¹å¯¾çã«åãçµãã§ãããFacebookã¯ã¦ã¼ã¶ã¼ããµã¼ããã¼ãã£ã¼ã«ãã審æ»ãåãå ¥ãããã¹ããã¤ãã·ã¢ããã®ç«ã¡ä¸ããTrendingã®æ¹åãèå½ãã¥ã¼ã¹ã®ãããªãã·ã£ã¼ã®åºåç· ãåºãæ¹éãªã©ãçºè¡¨ãGoogleããã¹ãèªããæ¥æ¬ã§ãæè¿ãå質ã®ä½ãã³ã³ãã³ãã®ã©ã³ã¯ãä¸ããã¢ã«ã´ãªãºã 夿´ãçºè¡¨ãã¦ããã Facebookã¯ãã©ã³ã¹ã§ãä¸è¨ã®åãçµã¿ï¼Trendingã¯ç±³å½ã®ã¿ã®ãµã¼ã
2015å¹´æ«ã®TGAã«ã¦ããã©ã´ã³ãã©ã¼ã¹ã大ãããã£ã¼ãã£ã¼ããããã¢ã¼ã·ã§ã³æ åã¨å ±ã«ã¢ãã¦ã³ã¹ãããOculus RiftçãRock Band VRãã§ãããæ¬æ¥Harmonixãæ¬ä½ã®æ°ãã¬ã¼ã©ã¼ãå ¬éããçºå£²æ¥ã2017å¹´3æ23æ¥ã«æ±ºå®ãããã¨ãæããã«ãªãã¾ããã Oculus RiftçâRock Band VRâã¯ãã¨ã¢ãã¹ãã¹ã®âWalk This Wayâãã¶ã»ãã©ã¼ãºã®âWhen You Were Youngâããã©ã¢ã¢ã®âAinât It Funâãå«ã60æ²ãè¶ ãããµã¦ã³ããã©ãã¯ãã°ãã¼ãã«ãªã¹ã³ã¢ãã¼ãã徿¥ã®ã¹ã³ã¢ãå©ç¨å¯è½ãªã¯ã©ã·ãã¯ã¢ã¼ãããã¼ã³ãå¾ã®VRå±éãç¹è²ã¨ãã¦ãããPS4çã®ã®ã¿ã¼ã³ã³ããã¼ã©ã¼ã忢±ãããã³ãã«ã¨Xbox Oneçã®ã¿ã¼ã³ã³ããã¼ã©ã¼ã忢±ãããã³ãã«ã®äºç´è²©å£²ãæµ·å¤Amazonã«ã¦ã¹ã¿ã¼ããã¦ãã¾ãã
tha社ã«ããVRã³ã³ãã³ããPOINT OF VIEWãã é¨å±ã®ä¸ã«åå¨ããã¢ãããã£ã¨è¦ã¤ãããã¨ã§ãæä¾ããããã®ã¢ãèªèº«ãæããè¦è¦ä¸çã«æ²¡å ¥ãããã¨ãã§ãããã¨ãããã®ã Oculus Riftãæã£ã¦ãªãã®ã§ä½é¨åºæ¥ãªãã®ã§ããããPowers of Tençãã«ã©ãã©ãã¹ã±ã¼ã«ããã¢ã¤ãã£ã¢ãé¢ç½ããã§ããã VRãé²åãã¦å°ãããªãã°ã人ã®è¦ç¹ã«å ¥ãè¾¼ãã ãã§ãããããªä¸çãæ³åããã¦ããã¾ãã å ±åå¶ä½è ã¯guponããã
HoloLensã§ç©ºä¸ã«åºç¾ããç©´ãéãæããå ã¯ã¾ã£ããã®å¥ç©ºé ç¾å®ç©ºéä¸ã«3Dã¢ãã«ã表示ããMRããã¤ã¹ãHoloLensãTwitterã¦ã¼ã¶ã¼ã@VoxelKeiæ°ã¯HoloLensã§ç©ºéä¸ã«ç©´ãéããè¦è¦çã«å¥ã®å ´æã¸ç§»åã§ãããããªã¢ããªãå¶ä½ãã¾ããã 空éã«ç©´ãéãã¦åããå´ã¸è¡ããã¨ãåºæ¥ãã#HoloLens pic.twitter.com/1jQUX3OcoU â VoxelKei (@VoxelKei) 2017å¹´2æ5æ¥ ç¶ºéºãªç©ºéã§HoloLensã§HoleLensãã¦ãã¾ããã#HoloLens pic.twitter.com/eOoRZM90FD â VoxelKei (@VoxelKei) 2017å¹´2æ6æ¥ ç¾å®ç©ºéã«åºç¾ããç©´ã¯â¦â¦ãªãã¨éãæãå¯è½ï¼ ã¤ã¾ãã æãéãåä½ãããã¨ããªã«ããªãç¾å®ç©ºéä¸ã«ç©´ããã©ããå¥ã®æ¯è²ãè¦ãã¾ãã ç©´ã«ããã£
éå¶è æ å ±æ¬ãµã¤ãã¯ãæ¥æ¬æå¤§ç´æå·è³ç£å弿ã»è²©å£²æãããããã³ã¯ããéå¶ããããããã³ã¤ã³(Bitcoin)ããããã¯ãã§ã¼ã³ãæå·è³ç£(ä»®æ³é貨)ã«é¢ããç¥èãä¸çä¸ã®ææ°ã®ãããã¯ã¹ãæå ç«¯ã®æè¡ãããã¸ã§ã¯ããè¦å¶ãç¸å ´ãªã©ãæå·è³ç£æè³ã®ãã³ãã«ãªããå½¹ç«ã¡æ å ±ãçºä¿¡ããã¡ãã£ã¢ã§ãã éèåºã®ãã¼ã ãã¼ã¸ã«è¨è¼ãããæå·è³ç£äº¤ææ¥è ãåãæ±ãæå·è³ç£ï¼ä»®æ³é貨ï¼ã¯ãå½è©²æå·è³ç£äº¤ææ¥è ã®èª¬æã«åºã¥ãã è³éæ±ºæ¸æ³ä¸ã®å®ç¾©ã«è©²å½ãããã¨ã確èªãããã®ã«ããã¾ããã éèåºã»è²¡åå±ãããããã®æå·è³ç£ï¼ä»®æ³é貨ï¼ã®ä¾¡å¤ãä¿è¨¼ããããæ¨å¥¨ãããã®ã§ã¯ããã¾ããã æå·è³ç£ï¼ä»®æ³é貨ï¼ã¯ãå¿ ãããè£ä»ãã¨ãªãè³ç£ãæã¤ãã®ã§ã¯ããã¾ãããæå·è³ç£ï¼ä»®æ³é貨ï¼ã®åå¼ãè¡ãéã«ã¯ã以ä¸ã®æ³¨æç¹ã«ãçæãã ããã ï¼æå·è³ç£ï¼ä»®æ³é貨ï¼ãå©ç¨ããéã®æ³¨æç¹ï¼æå·è³ç£ï¼ä»®æ³é貨ï¼ã¯ãæ¥æ¬åã
How to watch Polaris Dawn astronauts attempt the first commercial spacewalk
2011å¹´ããã¢ã¼ã¿ã¼ã·ã§ã¼åãã¦ãããCESãã2017å¹´ã®CESã¯ãã¤ãã«ãèªåé転è»ã¨äººå·¥ç¥è½ã®ã¦ã¼ããã¢ãã¨ãªã£ãã 誤解ãæãããCES 2017ããä¸è¨ã§ç¤ºããªãã°ãèªåé転è»ã¨äººå·¥ç¥è½ã®ã¦ã¼ããã¢ãã§ãã£ãã ããã®ã¼ãã°2011å¹´1æããã©ã¼ãï¼Ford Motorï¼ãããã®ç¿é±ã«ãããã¤ãã§éå¬ããããåç±³å½éèªåè»ã·ã§ã¼ãã§ã¯ãªããå®¶é»è¦æ¬å¸ã§ãã£ãCESã§æ°è»ãçºè¡¨ãããã¨ããå§ã¾ããã¾ãåå¹´ãã¢ã¦ãã£ï¼Audiï¼ã¯NVIDIAã®ãTegra2ãã®èªåè»ã¸ã®æ¡ç¨ãçºè¡¨ãã¢ãã¤ã«ã®æè¡ãæ¡ç¨ãã¯ã«ãã®é¨åãã¢ã¸ã¥ã¼ã«åãããã¨ã§éçºã¹ãã³ã®ç縮ã«çæããã ãã®æããCESã®ã¢ã¼ã¿ã¼ã·ã§ã¼åãæ¬æ ¼åãä»ã«è³ãã彿ãé§ãåºãã ã£ãçè ã®NVIDIAã«å¯¾ããå°è±¡ã¯ãã²ã¼ã åãããããã³ãã¼ã ã£ãããããã¢ã¦ãã£ã®çºè¡¨ã«è§¦ããéãå°æ¥NVIDIAã¯ã¯ã«ãåãããããã³ãã¼ã¨
NVIDIA Announces Quadro GP100 - Big Pascal Comes to Workstationsï¼AnandTechï¼ NVIDIA Announces Quadro P4000, P2000, P1000, P600, & P400 - Finishing the Quadro Pascal Refreshï¼AnandTechï¼ NVIDIA Unveils New Line of Quadro Pascal GPUsï¼techPowerUp!ï¼ NVIDIAã16GB HBM2æè¼ãå精度5TFLOPSãå精度10TFLOPSã®ãQuadro GP100ãï¼Impress PC Watchï¼ NVIDIAï¼ã¯ã¼ã¯ã¹ãã¼ã·ã§ã³åãæ°GPUãQuadro GP100ããçºè¡¨ããNVLinkãã«ãããã¥ã¢ã«GPUæ§æãå¯è½ã«ï¼4Gamer.netï¼ NVIDI
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}