å æ¥ããªã³ã©ã¤ã³å¦ç¿ãµã¤ãCourseraã®æ©æ¢°å¦ç¿ã³ã¼ã¹ "Machine Learning by Stanford University" ãä¿®äºãã¾ããã
(æåã®ã¨ã³ãã£ã³ã°åç»)
ãã ãæ©æ¢°å¦ç¿ã«èå³ããã£ã¦æ å ±åéãå§ãã¦ã人ã«ã¨ã£ã¦ããCourseraã®æ©æ¢°å¦ç¿ã³ã¼ã¹ãããããã§ãããã¨ãã話ã¯
ãã¯ããç¥ã£ã¦ã¾ãã
ã¨ããæãã§ã¯ãªãã§ããããã
åããããªæãã§ã幾度ã¨ãªã人ãè¨äºã«åã³ã¼ã¹ãè¦ããããããã¤ã¤ããã¶ã2å¹´ãããã¹ã«ã¼ãç¶ãã¦ããã¨æãã¾ãã
ãããç´2ã¶æåãã²ãããªãã£ããããæ¬è¬åº§ãå§ãã¦ã¿ã¦ããã¯ãè©å¤éãæé«ã ã£ãã¨æãã¨åæã«ãåã¨åããããªæãã§ãã®ã³ã¼ã¹ãè¯ããããã¨ç¥ããªãããã¹ã«ã¼ãç¶ãã¦ã人ã¯å¤ãããããªããã¨æãã¾ãã¦ãï¼ããã£ãããªãããï¼èªåã®è³å
ã«ãã£ãããããªãçç±ããåæãã¤ã¤ãããããããã§ããã£ãæ¹ãããã§ãããã¨ããã®ãæ¸ãã¦ã¿ããã¨æãã¾ãã
ãã¹ã¿ã³ãã©ã¼ãã®ææ¥ãã¬ãã«é«ãã
ä¸çæé«å³°ã®ã¹ã¿ã³ãã©ã¼ã大å¦ã®ææ¥ãããããå ¥éã§ããã¨è¨ããã¦ãã
ãããã¯ã¬ãã«ã®é«ãä¸ã§ã®å ¥éã§ããï¼ã
ã¨æã£ã¦ã¾ãããæè¡æ¸ãèªãã§ããã£ã±ãé ã«å ¥ã£ã¦ããªã人ã®æ°æã¡ãªãã¦ããããªãã§ãããããã¨ã
ããããã®ææ¥ã¯ãµã«ã§ããããã¾ããã»ã»ã»ã¨ã¯è¨ãã¾ããã
ãã£ã±ãæ°å¼ãããããåºã¦ãã¦ä½è¨ã£ã¦ãã®ãããããªããªãã¾ããç ããªãã¾ããã§ãå°ãªãã¨ãã¹ã¿ã³ãã©ã¼ãã«å ¥å¦ã§ããç¨ã®ä¸çæé«å³°ã®åæç¥èãå¿ è¦ã£ã¦ãã¨ã¯ãªãã§ãã
é«æ ¡ã¬ãã«ã®æ°å¦ãããã°ã©ãã³ã°ãåºæ¥ãã°åæç¥èã¨ãã¦ã¯ååã§ãAndrewå çã¯æ°å¼ã®æå³ã説æããã®ããã¡ããã¡ããã¾ãã§ããé ãåãè½ã¨ãã¦ã·ã³ãã«ã«ããã¨ãããããé åºç«ã¦ã¦ãã®æ°å¼ã®æ§è³ªã説æãã¦ããã¦ããããæ©æ¢°å¦ç¿ã§ã©ãå½¹ç«ã¤ã®ããã¨ãã話ããã¦ãããã®ã§ãç´å¾æã»è ¹è½ã¡æãããã¾ãã
ããã¦æã«ã¯ãããã®æ°å¼ã®æå³ã¯ããã£ã¦ãªãã¦ãåã人ãå®è£
ããã©ã¤ãã©ãªä½¿ãã°æ©æ¢°å¦ç¿ã¯ã§ãããã大ä¸å¤«ã ãã¨è¨ã£ã¦ããããããã¾ããããããªã人ã®æ°æã¡ãããã£ã¦ãå
çã ãªã¨éæã§æãã¾ãã
ããããªãåéã®è©±ããè±èªã§å¦ã¶ãªãã¦...
å ¨ç·¨ã«æ¥æ¬èªåå¹ãããã¾ããèªå翻訳ã®æ°æã¡æªãæ¥æ¬èªã§ã¯ãªãã¦ããã©ã³ãã£ã¢ã«ããèªç¶ãªæ¥æ¬èªã§ãã
å½ååã«ã¯ãè±èªã®åç»ãæ¥æ¬èªåå¹ã§è¦ãã®ã¯ä½ãè² ããæãããããè±èªã§è¦³ãã¨è±èªã®åå¼·ã«ããªã£ã¦ä¸ç³äºé³¥ãã¨ããå¤ãªãã ãããããã¾ãããã
- æ©æ¢°å¦ç¿ãå¦ã¶ã®ãå 決
- ï¼è±èªã§è¦³ããã¨ã§ï¼å¿ççãã¼ãã«ãé«ããªã£ã¦è¬åº§ããããªããªã£ã¦ã¯æ¬æ«è»¢å
ã¨éãç´ã£ã¦å
¨ã¦æ¥æ¬èªã§è¦³ã¾ããã
ãã®å¾è²ã ãªãªã³ã©ã¤ã³ã³ã¼ã¹ãåºã¦ãã¦ããããã£ã¨è¯ãã®ãããããããªãï¼
ãã®ã³ã¼ã¹ããã¤ããããã®ããããã¾ãããããã¶ã2012å¹´ã«ã¯ãããã£ãã¨æãã¾ããä»ã§ã¯æåããæ¥æ¬äººãæ¥æ¬èªã§è§£èª¬ãã¦ããè¬åº§ãããã§ããããããã£ã¼ãã©ã¼ãã³ã°ã¾ã§ã«ãã¼ãã¦ãããã®ãããã¾ãããè©ä¾¡ãé«ããã®ãããã¾ãã
ãã®ã³ã¼ã¹ãåªãã¦ããç¹ã¨ãã¦ãAndrewå çã®èª¬æããããããããå®è·µçãªå 容ã§ãããã¨ãã£ããã¨ãããæãããã¾ããããããããã¡ããè¯ãããã§ããã
æ¯é±ã®ããã°ã©ãã³ã°èª²é¡ã®æåºã義åä»ãããã¦ãã
ã¨ããç¹ã§ãåã¯ä»ã®ãªã³ã©ã¤ã³è¬åº§ã¨æ¯ã¹ã¦å§åçã«è¯ãã¨æãã¾ããã
åç»ã§å¦ãã ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨ãã¬ã³ã¡ã³ãã·ã¹ãã ãèªåã§å®è£ ãã¦ãæ¯é±æåºããå¿ è¦ãããã¾ã*1ã
ãããæ¬å½ã«ç´ æ´ãããã¦ã
- åç»ãè¦ã¦ããç解ã§ããªãã¦ããèªåã§ããã°ã©ã ãæ¸ãã¦ã¿ãã¨ããç解ã§ãã
- åç»ãè¦ã¦ç解ã§ããã¨æã£ã¦ãã¦ããèªåã§ããã°ã©ã ãæ¸ãã¦ã¿ãã¨ç解ãææ§ã ã£ãé¨åãæµ®ã彫ãã«ãªããã¨ããã
- ã¡ããã¨å¦ãã ã¨ããå®æããã
ã¨ããå¹æãããã¨æãã¾ãããä»ã®ãªã³ã©ã¤ã³è¬åº§ã§ã¯ãã¾ããã®å½¢å¼ã¯è¦ããã¨ãªãã¦ãã©ããªã«åç»ãè¯ãã¦ããçµå±ããããªãã¨æå³ãªããããªãã¨ããæãã¾ã*2ã
ã¡ãªã¿ã«æè¿ããã¼ãããä½ãDeep Learningãã¨ããæ¸ç±ãã¨ã¦ãè©å¤ãè¯ããããã§ã¼ãããå¦ã³å§ããï¼å¦ã¼ãã¨æã£ã¦ãããã¨ãã人ãå¤ãã¨æãã¾ãã
ãªã©ã¤ãªã¼ã¸ã£ãã³
売ãä¸ãã©ã³ãã³ã°: 65
åãæè¿è²·ã£ã¦èªãã§ã¿ã¦ããã®æ¬ã®ãæãåããã¦èªåã§å®è£ ãã¦ã¿ããã¨ããã³ã³ã»ããã®è¯ãã«éãããã®ãããã®Courseraã®æ©æ¢°å¦ç¿ã³ã¼ã¹ããããã¨æãã¾ãããä¸è¿°ãã¾ãããå¦ãã ãã¨ã¯å ¨ã¦èªåã§å®è£ ãããã¨ã«ãªãã®ã§ã
ã¡ãªã¿ã«ãã®æ¬ã¨Courseraã®æ©æ¢°å¦ç¿ã³ã¼ã¹ã¯ï¼è¢«ãé¨åãããã¾ããï¼ã«ãã¼ããç¯å²ãéãã®ã§ä¸¡æ¹ã¨ããã£ã¦æã¯ãªãã¨å人çã«ã¯æãã¾ãããã£ã¼ãã©ã¼ãã³ã°æ¬ã¯ãã£ã¼ãã©ã¼ãã³ã°ã«å°éããããã®è¦ç´ æè¡ï¼ç¥èãæçè·é¢ã§å¦ã¶æãã§ãããCourseraæ©æ¢°å¦ç¿ã³ã¼ã¹ã¯ãã£ã¨æ©æ¢°å¦ç¿ã®åºæ¬äºé ãåºãç¶²ç¾ ããæãã§ãã*3
Octaveãããªãã¦Pythonã§ãããã
ãä»æ©æ¢°å¦ç¿ãããªãPythonã ãããªãOctaveã»ã»ã»ï¼ãã¨ããã¨ããã§é¿ãã¦ãã¾ã人ãå¤ãããããã¾ããã
ãã¡ããåãOctaveã¯åãã¦è§¦ãã¾ããããã®è¬åº§ä»¥å¤ã§ãã触ããã¨ããªãããããªããã¨ããæãã¾ãããOctaveç¬èªã®ä½¿ãæ¹ã¨ãè¨æ³ãå¦ã¶ãã¨ãããªã¼ãã¼ãããã¯ã»ã¨ãã©ãªãã£ãã¨æãã¾ã *4ã
ããã°ã©ãã³ã°èª²é¡ã§ãã£ãå®è£
ã¯èªåã§ä¸èº«ãç解ãã¦ããï¼ã©ãããé¢æ°ã使ã£ã¦ãããããªãããããè¨ç®ããã¦ãããï¼ã®ã§ãã¤ãã£ããã®ããã¨ããä»ã®è¨èªããã¬ã¼ã ã¯ã¼ã¯ã«ç§»æ¤ããã®ãç°¡åãããã¨æã£ã¦ãã¾ãã
ä»å¿ããããè½ã¡çãããããã
ããã¾ã§èªãã§ããè¯ãããã ãªãã£ã¦æã£ãæ¹ãããã£ãããããããã¾ãããã§ãåæã«ãä»å¿ããã®ã§ãè½ã¡çãããããããã¨æã£ãæ¹ã¯å¤ãããããªãããªã¨æ¨å¯ãã¾ããä»äºã¯æ¯æ¥ããããã¨ã³ã¸ãã¢ã¯å¦ã¶ãã¨ã¯ä»ã«ããããã§ããããã
åãããã§ãããä»äºããã©ã¤ãã¼ãããã¡ããã¡ãå¿ããã£ãããåªå çã«å¦ã¶ã¹ãæè¡ãä»ã«ãã£ãã®ã§ãã1ã¶æå¾ãããã«ã¯ä»ããã¯è½ã¡çãã¦ãã¯ãã ãããã®ã¨ãã«ãã£ã¦æããããã®ã§ããããµã¨ã³ã¼ã¹ã®ã«ãªãã¥ã©ã ãè¦ã¦èããå¤ããã¾ããã
ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãããã¯ã¡ããã¨ç解ããããªãã¨æã£ã¦ããã®ã§ãããæ¬ã³ã¼ã¹ã§ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ã¤ãã¦å¦ã¶ã®ã¯WEEK4, 5ãã¡ããã¨1ã¶æå¾ã«åè¬éå§ããã¨ãã¦ãé å½ã«é²ãã¦ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®åºç¤ãå¦ã¹ãã®ããã®1ã¶æå¾ã
ãã®æ©æ¢°å¦ç¿ï¼ãã£ã¼ãã©ã¼ãã³ã°ãçãä¸ãã£ã¦ãä¸ãæä½ã§ããã¨2ã¶æã¯èªåã¯ã¹ã¿ã¼ãå°ç¹ã«ããç«ã¦ã¦ããªããã¨ã«ãªãã®ããã¨æç¶ã¨ããããã«å§ãããã¨ã«ããããã§ãã
å½åã¯ä¿®äºãããã¨ã¯éè¦ãã¦ãªãã£ãã®ã§ããããªããã¥ã¼ã©ã«ãããã®ç« ã ããããã¨ãèãã¾ãããããæ¬ã³ã¼ã¹ã®ã«ãªãã¥ã©ã ã¯ç¥èãç©ã¿ä¸ãã£ã¦ããããã«ãã¶ã¤ã³ããã¦ãã¦ãåºç¤ã®ãç·å½¢å帰ãã¨ãããã¸ã¹ãã£ãã¯å帰ãã§å¦ãã ç¥èã¯ãã®å¾ã®ç« ã®ããããé¨åã«é¢ä¿ãã¦ããã®ã§ãæåããéãã§ãã£ã¦ããã£ããã¨æã£ã¦ãã¾ãã
ç¶ããã³ã
ãããã£ã¦ãããããã¦ããããã§ãããæ©æ¢°å¦ç¿ã§ä½ããããå ·ä½çãªäºå®ãããããã§ããªããä»äºããã©ã¤ãã¼ããæ®éã«å¿ãããã¨ããç¶æ³ã«ããã¦ã¯å®éã®ã¨ããå®èµ°ããã®ã¯ãªããªã大å¤ãªããããªããã¨æãã¾ãã
åã¯ç¬¬1é±ç®ã¯ãæ©æ¢°å¦ç¿ã®æ´å²ãã¿ãããªæµãè¦ãã¦ãè¯ãå 容ã ããã¨æã£ã¦æåã¯æ°è»½ã«å§ãã¦ã¿ãã®ã§ãããæåã®åç»ã ã2ã¤ç®ã®åç»ã ãã§ãããããªãæ°å¼ãããªããªåºã¦ãã¦é¢é£ãã£ãè¨æ¶ãããã¾ããæ®éã«æ°ãéãã§ãã
ãããªä¸ã§ãç¶ããããçç±ã3ã¤ã»ã©ãããªã¨æãã®ã§åèã¾ã§ã«æ¸ãã¦ããã¾ãã
1. ä¸éç®æ¨ããã£ã
å½åã¯å®èµ°ããã¤ããã¯ãªãã¦ãã¨ãããã第5é±ã®ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¾ã§ã¯ããããã¨æã£ã¦ãã¾ããã
ã§ã第5é±ç®ã¾ã§ãã£ã¦ãä¿®äºè¨¼æ¸ã欲ããããã§ããªãã£ãã®ã§ããã¦ãããã£ãããã§ããããã®å ã®ã«ãªãã¥ã©ã ã«ã次å åæ¸ããã¬ã³ã¡ã³ãã·ã¹ãã ãçããã¤ãå¦ã³ããé ç®ããã£ãã®ã§ãããã¡ãã£ã¨ãã£ã¦ã¿ãããã¨ã
8é±ç®ãããã¾ã§ãã£ãã¨ããæå¾ã®ç¬¬10é±ã第11é±ã¯ããã°ã©ãã³ã°èª²é¡ããªããã¨ã«æ°ã¥ãã¾ãããå®è³ªãã¨2é±ããã°ãã°å®èµ°ãããï¼ã¨ã
ãããªãããªã§ãä¸éç®æ¨ãè¦ã¦ãããã¡ã«å®èµ°ã§ãããã¨ãã話ã§ãã
2. ãæ«æãããããä¸çãªã³ã©ã¤ã³è¬åº§ã§åå¼·ã§ããªãä½ã«ãªããã¨ããæèããã£ã
èªåã®æ§è³ªä¸ãä¸åº¦èªåã®æå¿ãæã£ãåä¾ãã¤ãã£ã¦ãã¾ãã¨ããããã¡ãªãã§ãããããããåºæºã«ãªã£ã¦ãã¾ãã
ãä»é±ãã£ã¡ãå¿ãããã©ãä¸é±ã§ããµãã£ãããããã®è¬åº§ããããã¨ã¯ãªãã ããã
ããã®è¬åº§ãå®èµ°ããªãã£ãããããä¸çã©ããªãªã³ã©ã¤ã³è¬åº§ãå®èµ°ãããã¨ã¯ãªãã ããã
極端ã ã¨æãããããããã¾ãããã人çã40å¹´è¿ããã£ã¦ãã¦å®éãããªæãã ã£ãã®ã§ããããã§ãªã³ã©ã¤ã³è¬åº§ã¨ããè²´éãªå¦ç¿ã®é¸æè¢ã失ãããã«ã¯ãããªããã¨ããæãã§å¾åã¯é²ãã¦ãã¾ããã
3. é©åº¦ã«é£ã°ããªããé²ãã
ä¾ãã°ï¼ä¸è¿°ããéãï¼Octaveã®æ¸ãæ¹ã®åç»ã¯é£ã°ãã¾ããããååã«ã¯çµæ§ããããã¹ãã«ãã解説ã¨PDFã¯å
¨é¨é£ã°ãã¾ããããããã°ã©ãã³ã°èª²é¡ã®"optional"åé¡ã容赦ãªãé£ã°ãã¾ããããã£ãæ¹ãããã®ã¯ééãããã¾ããããæ«æããããã¯åã«é²ãã ã»ããããã®ã§ã
ã¾ã¨ã
ã¨ããããã§Courseraã®"Machine Learning"ãããããã§ãï¼
*1:èªåã§ããã«æ¡ç¹ãããããã«ãªã£ã¦ãã¾ã
*2:宿é¡ã¨ãã¦èª²ãããªãã¦ãèªåã§æãåããã¦å¦ã¹ã人ã¯å¥
*3:å人çã«ã¯ãå ã«Courseraã®æ¹ããããå¾ãããã®æ¬ã§ï¼æ¢ã«ç¥ã£ã¦ããã¨ããã¯é£ã°ãã¤ã¤ï¼ãã£ãæ¹ãããããããã®ã§ã¯ãã¨æãã¾ããã
*4:åºç¤ã§Octaveã®ä½¿ãæ¹ã®åç»ãããããã»ã¨ãã©é£ã°ãã¦ããã¹ãã¨èª²é¡ã§å¿ è¦ã«ãªã度ã«ã°ã°ããã¨ããæ¹æ³ã§ååä¹ãåãã¾ãã