å°å ¥ ã³ã¼ãã£ã³ã°ãã¹ããçªç ´ããããã«ã大åãªã¢ã«ã´ãªãºã ããã¼ã¿æ§é ã解説ãã¦ãã¾ãã ãã®è¨äºã§ã¯ã以ä¸ã®ãããªäººã対象ã«ãã¦ãã¾ãã å®éã«ã¢ã«ã´ãªãºã ã使ã£ã¦åé¡ã解ãã¨ããã¤ãã¦ã¯ããPython3ãã³ã¼ãã£ã³ã°ãã¹ãç¨ãã¼ãã·ã¼ãï¼ç·´ç¿åé¡ä»ãï¼ã§ç´¹ä»ãã¦ãã¾ãã®ã§ãè¯ãã£ããèªãã§ãã ããã æä½éã®æ°å¦ã«ã¤ãã¦ã®ç¥èããã 使ãæ £ãã¦ããããã°ã©ãã³ã°è¨èªããã åºæ¬çãªã¢ã«ã´ãªãºã ãç解ãã¦ãã ç·´ç¿åé¡ã解ãæ £ãã¦ãã ã³ã¼ãã£ã³ã°ãã¹ããåããåã«å¿ è¦æä½éã®ã¢ã«ã´ãªãºã ãç¥ã£ã¦ãããã人ã«åãããã®ã§ã 競æããã°ã©ãã³ã°ã«åå ããã人ããå³å¯ãªè§£èª¬ãæå¾ ãã人ã«åãããã®ã§ã¯ãªãã®ã§ãäºæ¿ãã ããã ã³ã¼ãã£ã³ã°ãã¹ãã«æ±ãããã2ã¤ã®ã¹ãã«ãããã¨æãã¾ãã ã³ã¼ãã£ã³ã°ã®é度ã¨ç²¾åº¦ ãã¼ã¿æ§é ãã¢ã«ã´ãªãºã ã®ç解 ãã®è¨äºã§ã¯ããã¹ã¦ã®ã¢ã«ã´ãªãºã ãç¶²ç¾ ãã
1: è³¼å ¥ 0: é²è¦§(ãããè³¼å ¥ãã¦ãªã) -: æªè¦³æ¸¬ ã¦ã¼ã¶ã¼ãã¼ã¹å ã¦ã¼ã¶ã¼å士ã®é¡ä¼¼åº¦ãè¨ç® ãããªãã¨è³¼å ¥å±¥æ´ã®ä¼¼ãã¦ã¼ã¶ã¼ã¯ãããªååãè²·ã£ã¦ãã¾ãã è¡ãåã¦ã¼ã¶ã¼ã®ãã¯ãã«ã¨ã¿ãªãã¦ãä¼¼ãã¦ã¼ã¶ã¼ãè¦ã¤ããï¼ä¸ä½Näººï¼ ä¼¼ãã¦ã¼ã¶ã¼ãè³¼å ¥ãã¦ããã¢ã¤ãã ãæ¨è¦ããï¼N人ã®å¹³åå¤ãªã©ã§è³¼å ¥ããããªé ã«æç¤ºï¼ ã¢ã¤ãã ãã¼ã¹å ã¢ã¤ãã å士ã®é¡ä¼¼åº¦ãè¨ç® ããã®ååãè²·ã£ãã¦ã¼ã¶ã¼ã¯ãããªååãè²·ã£ã¦ã¾ãã åãåã¢ã¤ãã ã®ãã¯ãã«ã¨ã¿ãªãã¦ãé¡ä¼¼åº¦ã®é«ãã¢ã¤ãã ãæ¨è¦ããï¼ä¸ä½Mä»¶ï¼ é¡ä¼¼åº¦è¨ç®ã«ã¯ãã³ãµã¤ã³é¡ä¼¼åº¦ãJaccardé¡ä¼¼åº¦ã使ãããã é¡ä¼¼åº¦ãè¨ç®ããéã«ãæªè¦³æ¸¬ã-ãã¯é©å½ãªå¤ï¼0, 0.5ãªã©ï¼ã§åããããç¡è¦ãããã ãã°ãã¼ã¿ã使ããããæ å ±ã®å°ãªãæ°è¦ã¢ã¤ãã /æ°è¦ã¦ã¼ã¶ã¼ã«å¼±ãã³ã¼ã«ãã¹ã¿ã¼ãåé¡ãããã ã³ã³ãã³ããã¼ã¹ãã£ã«ã¿ãªã³ã° ã¢ã¤ãã
çµè«ããè¨ãã¨ããã®è¨äºãèªãã @pocokhc (ã¡ããã )ããã¨ããæ¹ãéååãããæ¸ããEDæ³ã®ãµã³ãã«ããã°ã©ã ãè¦ã¤ãã¦ãã ããã¾ããã ã¡ããã ããã®è¨äºã¯ãã¡ã èªåã§è§£æãããã£ãã¨ããæ°æã¡ãç¡ããã¨ã¯ç¡ãã§ãããããºã£ãæç¹ã§èª°ããå®è£ ãã¦ãããããªæ°ã¯ãã¦ãã¾ãããæ°åããITæ¥çã«å ¥ã£ã¦4å¹´ç®ãå§ã¾ã£ãã¨ããã§ãããæ¥å以å¤ã§åãã¦æ¥çã«ã³ã³ããªãã¥ã¼ãã§ããæ°ããã¦å¬ããã§ãï¼ è¿½è¨ã¤ãã§ã«ãè¬ç½ªãã¾ããååå ¬éæã«è¨äºã¿ã¤ãã«å«ãæ¬æä¸ã§ä½ãæããWinneyãã¨æ¸ãã¦ãã¾ã£ã¦ããç®æãããã¾ããã失礼ãããã¾ããã誤åä¿®æ£ãã¦ããã¾ããææãã¦ãã ãã£ãä½äººãã®æ¹ã«æè¬ç³ãä¸ãã¾ãã ã¯ããã« ä»æ´ã§ããæ ç»ãwinnyããè¦ã¾ããã åä¸ã§ãéååããã®ã»ãªãã«EDæ³ã¨ããèãããã¨ã®ãªãã¢ã«ã´ãªãºã ãç»å ´ãã¾ããã ããã®NekoFightã«ã¯AIãæè¼
ã°ãªã³ã¬ã¼ãã£ã³ã° (Glicko rating) ã¯ããã§ã¹ãå²ç¢ã®ãããªã²ã¼ã ã«ããã¦ãã¬ã¤ã¤ã¼ã®å¼·ããè©ä¾¡ï¼ã¬ã¼ãã£ã³ã°ï¼ããããã®ã¢ã«ã´ãªãºã ã§ããããã¼ã¯ã»ã°ãªãã¯ãã³ã«ããã¤ãã¬ã¼ãã£ã³ã°ãæ¹åããã¹ãçºæããããã®ã§ãå½åã¯ãã§ã¹ã®ã©ã³ãã³ã°ã«ç¨ãããã¨ãæå³ããã¦ãããã¬ã¼ãã£ã³ã°ã®å®ç¾©ãåºæºã¯ã¤ãã¬ã¼ãã£ã³ã°ã¨åæ§ã§ãããã°ãªã³ã¬ã¼ãã£ã³ã°ã®æ大ã®ç¹å¾´ã¯ãã¬ã¼ãã£ã³ã°è¨ç®æã«ã¬ã¼ãã£ã³ã°åå·® (ratings deviation, RD) ã¨å¼ã°ããã¬ã¼ãã£ã³ã°ã®ä¿¡é ¼æ§ãå³ãææ³ãå°å ¥ããããã¨ã§ããã ã°ãªã³ã¬ã¼ãã£ã³ã°ä¸¦ã³ã«å¾è¿°ã®ã°ãªã³2ã¬ã¼ãã£ã³ã°ã¯ãããªãã¯ãã¡ã¤ã³ã¨ãã¦å ¬éããã¦ãããå¤ãã®ãªã³ã©ã¤ã³ä¸ã®ã²ã¼ã ãµã¼ãã¼ã«ããã¦ç¨ãããã¦ããï¼ä¾ãLichess, Free Internet Chess Server, Chess.com, Counter-Str
ãªã³ã°ãããã¡ã®ã¤ã¡ã¼ã¸å³ 1. ãªã³ã°ãããã¡ã¨ã¯ä½ã æ©è½çã«ã¯First In First Out (FIFO)ã¨ãå¼ã°ãããã¥ã¼ã®ä¸ç¨®ã§ãããããªã³ã°ç¶ã«ãããã¡ãç½®ãã¦ããã®ä¸ã§Readã¨Writeã®ã¤ã³ããã¯ã¹ãã°ã«ã°ã«ã¨åãæ§é ãã¨ãäºã«ãã£ã¦å®¹éã«ä¸éãã§ãããã¨ã¨å¼ãæãã«é«éãªèªã¿æ¸ãé度ãå¾ããã®ã§ããããã¥ã¼ãåã«å®è£ ããã ããªãå±±ã»ã©æ¹æ³ããã£ã¦ç·å½¢ãªã¹ãã使ã£ã¦ããããã¹ã¿ãã¯ã2ã¤ä½¿ã£ã¦ãåççã«ã¯å¯è½ã ããã®ä¸ã§ããªã³ã°ãããã¡ãç¨ããæ¹æ³ã®å©ç¹ã¯ã²ã¨ãã«æ§è½ã®é«ãã§ããã¡ã¢ãªç¢ºä¿ãªã©ãè¡ããªããé°ã§ã·ã¹ãã ç³»ã®æ§ã ãªå ´æã§ä½¿ããã¦ããã ããã®å®è£ èªä½ã¯æ å ±ç³»ã®å¤§å¦çã®æ¼ç¿ã¬ãã«ã®é£åº¦ã§ãããå°ã奥ãæ·±ããã¾ããªã³ã°ãããã¡ã®ã¹ã¿ã³ãã¼ããªã¤ã³ã¿ãã§ã¼ã¹ã¨å®è£ ã¯ä»¥ä¸ã®ãããªãã®ã§ããã class RingBuffer { public: explicit
ç±³Googleåä¸ã®AIä¼æ¥Google DeepMindã¯6æ7æ¥ï¼ç¾å°æéï¼ãã¢ã«ã´ãªãºã ãéçºããAIãAlphaDevããã人éãèãããã®ããé«éãªã½ã¼ãã¢ã«ã´ãªãºã ãçºè¦ããã¨çºè¡¨ããã ã½ã¼ãã¢ã«ã´ãªãºã ã¯ãå ¥åããããã¼ã¿ãä¸å®ã®ã«ã¼ã«ã«åºã¥ãã¦ä¸¦ã¹æ¿ãããã®ããããæ¤ç´¢çµæã®ä¸¦ã¹æ¿ããã©ã³ãã³ã°å¶ä½ãªã©ITæè¡ã®æ ¹å¹¹ãæ ãæè¡ã®ä¸ã¤ãä»åAlphaDevãèæ¡ããã¢ã«ã´ãªãºã ã¯æ¢åã®ãã®ã«æ¯ã¹ã¦ãå°éã®ãã¼ã¿ãªãæ大70ï¼ ãæ°åä¸è¦æ¨¡ã®å¤§éã®ãã¼ã¿ãªãç´1.7ï¼ éãå¦çã§ããã DeepMindã¯AlphaDevã«æ°ããã¢ã«ã´ãªãºã ãçºè¦ããããããã½ã¼ãã®ä½æ¥ããçµã¿ç«ã¦ã²ã¼ã ãã¨ãã¦ãã¬ã¤ãããããæ£ç¢ºã«ã½ã¼ãã§ããããæ¢åã®ã¢ã«ã´ãªãºã ããé«éã§ãããã¨ãã2ç¹ãæºããã°ã¯ãªã¢ã¨ããã é¢é£è¨äº OpenAIãDeepMindã®CEOããããç 究è ãããAIã«ãã人
ã¬ã¼ãã³ã·ã¥ã¿ã¤ã³è·é¢ï¼ã¬ã¼ãã³ã·ã¥ã¿ã¤ã³ããããè±: Levenshtein distanceï¼ã¯ãäºã¤ã®æååãã©ã®ç¨åº¦ç°ãªã£ã¦ãããã示ãè·é¢ã®ä¸ç¨®ã§ãããç·¨éè·é¢ï¼ã¸ããã ãããããè±: edit distanceï¼ã¨ãå¼ã°ãããå ·ä½çã«ã¯ã1æåã®æ¿å ¥ã»åé¤ã»ç½®æã«ãã£ã¦ãä¸æ¹ã®æååãããä¸æ¹ã®æååã«å¤å½¢ããã®ã«å¿ è¦ãªæé ã®æå°åæ°ã¨ãã¦å®ç¾©ããã[1]ãå称ã¯ã1965å¹´ã«ãããèæ¡ãããã·ã¢ã®å¦è ã¦ã©ã¸ã¼ãã«ã»ã¬ã¼ãã³ã·ã¥ã¿ã¤ã³ (é²: ÐладиÌÐ¼Ð¸Ñ ÐевенÑÑеÌйн) ã«ã¡ãªãã ã¬ã¼ãã³ã·ã¥ã¿ã¤ã³è·é¢ã¯ãåãæåæ°ã®åèªã«å¯¾ããç½®æç·¨éã«ä½¿ããã¦ããããã³ã°è·é¢ã®ä¸è¬åã§ããã¨è¦ãªããã¨ãå¯è½ã§ãããã¬ã¼ãã³ã·ã¥ã¿ã¤ã³è·é¢ã®æ´ãªãä¸è¬åã¨ãã¦ãä¾ãã°ä¸åã®æä½ã§äºæåãå¤æããçã®æ¹æ³ãèããããã å®éçãªè·é¢ã®æ±ãæ¹ãä¾ç¤ºããã°ããkittenãããs
æ¬ã¹ã©ã¤ãã§ã¯ã以ä¸ã®ï¼ã¤ã®å 容ãç´¹ä»ãã¾ãã ï¼ï¼ä¹±æã¢ã«ã´ãªãºã ï¼ä¹±æ°ã使ã£ã¦åé¡ã解ãã¢ã«ã´ãªãºã ï¼ ï¼ï¼ã©ã³ãã ãªå ¥åã«å¯¾ããã¢ã«ã´ãªãºã
ããã«ã¡ã¯ãLegalForce Researchã§ç 究å¡ããã¦ããç¥ç° (@kampersanda) ã§ãã LegalForce Researchã§ã¯ç¾å¨ãé«éãªãã¿ã¼ã³ãããã³ã°ãã·ã³ Daachorseï¼ãã¼ã¯ãã¼ã¹ï¼ãéçºã»éç¨ãã¦ãã¾ããæååå¦çã®åºç¤ã§ããè¤æ°ãã¿ã¼ã³æ¤ç´¢ãæä¾ããRust製ã©ã¤ãã©ãªã§ãã以ä¸ã®ã¬ãã¸ããªã§å ¬éããã¦ãã¾ãã github.com æ¬è¨äºã¯Daachorseã®æè¡ä»æ§ã解説ãã¾ããå ·ä½çã«ã¯ã è¤æ°ãã¿ã¼ã³æ¤ç´¢ã«é¢ä¿ããåºç¤æè¡ï¼ãã©ã¤æ¨ã»AhoâCorasickæ³ã»ããã«é åï¼ Daachorseã®å®è£ ã®å·¥å¤«ã¨æ§è½ ã解説ãã¾ãã 以ä¸ã®ãããªæ¹ãèªè ã¨ãã¦æ³å®ãã¾ãã æååå¦çã¢ã«ã´ãªãºã ããã¼ã¿æ§é ã«èå³ã®ããæ¹ èªç¶è¨èªå¦çã®è¦ç´ æè¡ã«èå³ã®ããæ¹ Rustã©ã¤ãã©ãªã«èå³ãããæ¹ Daachorseã«ã¤ã㦠è¤æ°ãã¿ã¼ã³æ¤ç´¢ã®åº
ãã®è¨äºã§ãé¡ã«ããã®ã¯CPUã¬ã¸ã¹ã¿ä¸ã®æ´æ°é¤ç®ã§ãã以ä¸ãåã«é¤ç®ã¨ãæ¸ãã¾ãã é¤ç®ã¯é常ã«é«ã³ã¹ããªæ¼ç®ãªãããã³ã³ãã¤ã©ã¯æé©åã«ãã£ã¦ãã§ããã ãæ´æ°é¤ç®ãå¥ã®è¨ç®ã«ç½®ãæãããã¨ãã¾ãã æé©åãã§ããå ´åã®ä¸ã¤ã¨ãã¦ãå²ãæ°ãå®æ°ã§ããå ´åãããã¾ããé ã®ããã³ã³ãã¤ã©ã¯ãé¤ç®ãä¹ç®ã¨ãããã·ããçãé§ä½¿ããæ¼ç®ã«ç½®ãæãã¾ãããã®è¨äºã§ã¯ããããã£ãæé©åã®èæ¯ã«ããçå±ãé¨åçã«è§£èª¬ãã¾ãã è¨ç®æ©ç°å¢ã¨ãã¦ã¯ã¢ãã³ãªx86 CPUãä»®å®ãã¾ãããããã£ã¦ã¬ã¸ã¹ã¿ã¯32/64ãããã§ãããè² æ°ã¯2ã®è£æ°è¡¨ç¾ã«ãªã£ã¦ãã¾ããããç¨åº¦ã¯ä»ã®å½ä»¤ã»ããã§ãéç¨ãã話ã«ãªã£ã¦ããããããã¾ããã ããããæ´æ°ã®é¤ç®ã¨ã¯ ããã°ã©ãã³ã°ã«ãããæ´æ°ã®é¤ç®ã®å®ç¾©ã«ã¤ãã¦ç¢ºèªãã¾ããæ´æ°$n$ãæ´æ°$d$ã§å²ãã¨ã $$ n = q \times d + r $$ ãæãç«ã¤ããã«é¤
æ¦è¦ ã¤ã³ã¿ã¼ãããã«æããã¦ããWebãµã¼ãã¹ã§ã¯ TVçã§ç´¹ä»ããããã¨ã«ãã大éæµå ¥ æªæãã人ç©ããã®æ»æ ã¯ã©ã¤ã¢ã³ãã®ãã°ã«ä¾ã大éãªã¯ã¨ã¹ã ãªã©ãæ¬æ¥æ³å®ãã¦ãã以ä¸ã®ãã©ãã£ãã¯ãæ¥ããã¨ã¯ããããã¾ãã åç´ã«ã·ã¹ãã ãæ§ç¯ããã¨å¤§è¦æ¨¡ãã©ãã£ãã¯ã«å¯¾å¿ã§ããã·ã¹ãã ãã¹ãã¼ãã¦ã³ãã¦ãã¾ããããä½ãããrate limitãããã¦ãããæ¹ãè¯ãã§ãã ãã ãrate limitã¨ä¸å£ã«å ¥ã£ã¦ãè²ã ãããããä»åã¯ä¸»ãªrate limitã¢ã«ã´ãªãºã ãç´¹ä»ãã¾ãã Leaky bucket Leaky bucketã¯ãã¼ã¿è»¢éã¬ã¼ããä¸å®ã«ããï¼ï¼ä¸éãè¨å®ããï¼ã¢ã«ã´ãªãºã ã§ãã ä¸ã®å³ã®ããã«ãæ§ã ãªæµéã®æ°´æµããã®ãã±ãã«æµãè¾¼ãã§ãå°ããªç©´ããã¯ä¸å®ã®æ°´æµãæµãåºãä»çµã¿ã§ãã ref: What is the difference between token
Raft 㯠Byzantine é害ã«å¯¾ããèæ§ããªããè«æãä¸è¦ãã¦æä¹ çãªãªã¼ãã¼ã®ä¹ã£åãããã®ãã°ã®æ¹ããããªã¼ãã¼é¸æã®å¦¨å®³ãªã©ãå¯è½ã§ããã¨ãããè¦ã¦ããP2P ã§ã¯ãªãå®å ¨ã«ç®¡çããããããã¯ã¼ã¯åãã®åæã¢ã«ã´ãªãºã (CFT; Crash Fault-Tolerance) ã§ããByzantine é害èæ§ãå¿ è¦ã§ããã° Raft ã§ã¯ãªãããã©ã¼ãã³ã¹ãç ç²ã«ã㦠pBFT ãªã©ã使ãå¿ è¦ãããã§ãããã è«æã§ã¯ Crash-Recovery ããæ·±å»ãªé害èæ§ã«ã¯è¨åãã¦ããªãã (è«èª¬ã®ç¯å²ãå¤ããããå½ç¶ã ã)ãããå®éã« Raft ãå®è£ ãããªãç¾å®çã«æ³å®ãããé害ã«å¯¾ãã¦å·¥å¤«ã§ããä½å°ãããã¤ãåå¨ãã¾ããä¾ãã°ããã¹ãç°å¢ã§ä½¿ç¨ãã¦ãããã¼ãã® 1 ã¤ãäºæ ã§æ¬çªã¯ã©ã¹ã¿ã«ãããåå ãã¦ãã¾ã£ããã¨ãã£ããããªéç¨äºæ ã§èµ·ãããé害㯠(大æµãã®ãããª
Solution ãããæåãªDPã®åé¡ã®1ã¤ã§ã. å人çã«ã¯ãã¡ããã¡ãé£ããã¨æãã¾ãâ¦. Longest Common Substringã¨ä¼¼ã¦ãã¾ãã, å¿ ãããè¦ç´ å士ã¯é£ãåã£ã¦ããå¿ è¦ããªãã¨ããç¹ãç°ãªãã¾ã. åé¡ã®ä¾ã«ã¤ãã¦èãã¦ã¿ã¾ã. ä¸ããããï¼ã¤ã®æååã縦ã¨æ¨ªã«ç½®ãã¦, ä¸ã®å³ã®ãããªãã¼ãã«ãèãã¾ã. ä¾ãã°ãªã¬ã³ã¸è²ã®ã»ã« Table[4][2] 㯠S1.subString(0, 5) = "12245" 㨠S2.subString(0, 3) = "692"ã®æé·å ±éé¨åã®é·ããæ ¼ç´ãããã¨ã«ãªãã¾ã. ãã®åé¡ã解ãã¨ãããã¨ã¯, ãã®è¡¨ã®ãã¹ã¦ã®å¤ãåãããã¨ã¨åä¸ã§ã. 0è¡ç®, 0åç®ããèãã¾ã. ä¾ãã°0è¡ç®, ãã㯠"1224533324" 㯠"6" ãå«ãã? "6" ãè¦ã¤ããã¾ã§ã¯ "0" ã, ããè¦ã¤ããã以é㯠"1
ãã¨ã«ã«AI TOP > ã¡ãã£ã¢ > æè¡è§£èª¬ > èªç¶è¨èªå¦ç > ãæè¡è§£èª¬ãä¼¼ã¦ããæååããããï¼ã¬ã¼ãã³ã·ã¥ã¿ã¤ã³è·é¢ã¨ã¸ã£ãã»ã¦ã£ã³ã¯ã©ã¼è·é¢ã®è¨ç®æ¹æ³ã¨ã¯ å·çï¼éåå´ äººã¯ã ãããééããç¯ããã®ã§ããï¼å¾¹å¤ã§ä»ä¸ããå ±åæ¸ãæåºããå¾ï¼ããè¦ç´ãã¦ã¿ãã¨èª¤åè±åãå±±ã»ã©è¦ã¤ãã£ãçµé¨ãèªè ã«ãããã ãã(ãããããã¨ç§ã ããããããªãã)ï¼ããããæï¼ããèªåã§ééã£ã¦ããåèªãè¦ã¤ãã¦ãããããã°ã©ã ããã£ããâ¦ã¨èãã人ããããããããªãï¼ããã§ä»åã¯ï¼æååå士ã®ä¼¼ã¦ãã度åããè¨ç®ãã2ã¤ã®ææ³ãç´¹ä»ãããï¼ âã¬ã¼ãã³ã·ã¥ã¿ã¤ã³è·é¢(Levenshtein Distance) âã¸ã£ãã»ã¦ã£ã³ã¯ã©ã¼è·é¢(Jaro-winkler Distance) ç®æ¬¡ æååã®é¡ä¼¼åº¦ï¼è·é¢ ç·¨éå¦ç(æ¿å ¥ï¼åé¤ï¼ç½®æ) ã¬ã¼ãã³ã·ã¥ã¿ã¤ã³è·é¢(Levenshtein Dis
æ å ±ç§å¦ç§ã®åæ¥çãããã°ã©ãã®ä¸ã«ã¯ãUberãNetflixã®ãããªæ°èä¼æ¥ãã Amazon ã Microsoft ã Google ã®ãããªå¤§ä¼æ¥ããInfosysãLuxsoftã®ãããªãµã¼ãã¹ãåºæ¬ã¨ããä¼æ¥ã§ãããã°ã©ãã³ã°ãã³ã¼ãã£ã³ã°ãã½ããã¦ã§ã¢éçºã®ä»äºã«å°±ãããã¨èãã人ã大å¢ãã¾ããããããå®éã«ãããã£ãä¼æ¥ã§é¢æ¥ãåããå ´åã大åã®äººã ããã°ã©ãã³ã°ã«é¢ãã¦ã©ã®ãããªè³ªåããããã è¦å½ãã¤ãã¾ããã ãã®è¨äºã§ã¯ã æ°åçããããã°ã©ãã«ãªã£ã¦1ã2å¹´ã¾ã§ã® çµé¨å¤ãç°ãªã人ãã¡åãã«ãããããã® ããã°ã©ãã³ã°ã®é¢æ¥ã§ããèããã質å ãããã¤ãç´¹ä»ãã¦ããã¾ãã ã³ã¼ãã£ã³ã°ã®é¢æ¥ã§ã¯ã主㫠ãã¼ã¿æ§é ã¨ã¢ã«ã´ãªãºã ã«åºã¥ãã質å ãããã¾ããã ä¸æå¤æ°ã使ããã«ã©ã®ããã«2ã¤ã®æ´æ°ãã¹ã¯ããããã®ã ãã¨ãããããªè«ççãªè³ªåããããã§ãããã
Cardanoï¼ADAï¼ï¼Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocolåç §ï¼ã¨ãã¯ã¹ãï¼Nxtï¼ã¨ãã©ãã¯ã³ã¤ã³ã¯ãã¹ãã¼ã¯ã®è¦æ¨¡ã¨çµã¿åããã¦æãä½ãããã·ã¥å¤ãæ¢ãå ¬å¼ã使ç¨ãããã¨ã§æ¬¡ã®çæè ãäºæ¸¬ããã©ã³ãã åã使ç¨ãã¦ãã[1][2][3] ãã¹ãã¼ã¯ã¯å ¬éããã¦ãããããåãã¼ãã¯åççãªç²¾åº¦ã§æ¬¡ã«ã©ã®ã¢ã«ã¦ã³ãããããã¯ããã©ã¼ã¸ï¼é³é ï¼ãã権å©ãå¾ãããããäºæ¸¬ã§ããã ãã¢ã³ã¤ã³ï¼åãã¦ãã«ã¼ãã»ãªãã»ã¹ãã¼ã¯ãæ¡ç¨ããæå·é貨ï¼ã®ãã«ã¼ãã»ãªãã»ã¹ãã¼ã¯ã·ã¹ãã ã¯ãã³ã¤ã³å¹´é½¢ï¼coin ageï¼ãï¼åã³ã¤ã³ã®ä¿ææ¥æ°ã®ç·åã«ç±æ¥ããæ°[4]ï¼ã®æ¦å¿µãã©ã³ãã åã¨çµã¿åããããã®ã§ããã å°ãªãã¨ã30æ¥é使ããã¦ããªãã³ã¤ã³ã¯æ¬¡ã®ãããã¯ã¸ã®ç«¶äºãå§ãããããå¤ã大ããã³ã¤ã³ç¾¤ã¯æ¬¡ã®ããã
確ççãã¼ã¿æ§é ã¯å°ãªãã¡ã¢ãªã§ãã¼ã¿ãã³ã³ãã¯ãã«ä¿åããä¿åããããã¼ã¿ã«é¢ããã¯ã¨ãªã«å¯¾ããããããã®çããæä¾ãã¦ããã¾ããã¯ã¨ãªã«å¯¾ã空éå¹çã®è¯ãæ¹æ³ã§çããããã«è¨è¨ããã¦ãããããã¯ã¤ã¾ããæ£ç¢ºããç ç²ã«ããã¨ãããã¨ã«ããªãã¾ãããããããããã¯ä¸è¬çã«ãåããã¦ãããã¼ã¿æ§é ã®ä»æ§ã«ãããã¾ããã誤差çã®ä¿è¨¼ã¨å¢çãæä¾ãã¦ããã¾ããã¡ã¢ãªä½¿ç¨éãå°ãªãããã確ççãã¼ã¿æ§é ã¯ã¹ããªã¼ãã³ã°ãä½åºåã®è¨å®ã«ç¹ã«æç¨ãªã®ã§ããã§ããããåç»ã®è¦è´åæ°ãæ°ããããéå»ã«æ稿ãããä¸æã¨ãªããã¤ã¼ãã®ãªã¹ããç¶æããããããªã©ãããã°ãã¼ã¿ã®ç°å¢ä¸ã§ã¯é常ã«æç¨ã§ããä¾ãã°ã HyperLogLog++ æ§é ã¯ã2.56KBã®ã¡ã¢ãªã§æ大790åã®ä¸æã®ã¢ã¤ãã ãæ°ãããã¨ãã§ããã®ã§ããã誤差çã¯ããã1.65ãã¼ã»ã³ãã§ãã Fast Forward Labsã®ãã¼ã ã¯
以åããç°¡æ½ãã¼ã¿æ§é LOUDS ã®è§£èª¬ãã¨ããã·ãªã¼ãºã®è¨äºãæ¸ãããã¨ãããã¾ãã LOUDS ã¨ããã®ã¯æ¨æ§é ãtrieãç°¡æ½ã«è¡¨ããã¨ãã§ãããã¼ã¿æ§é ãªã®ã§ããããã®ä¸ã§ãç°¡æ½ããããã¯ãã«ãã¨ãããã®ã«ã¤ãã¦ã¯ãã©ãã¯ããã¯ã¹ã¨ãã¦æ±ã£ã¦ãã¾ããã ã¾ããä¸å¦çã«ããããã¦ã§ã¼ãã¬ããè¡åãæ¸ããã¨ããããã®ä¸ã§åºã¦ãããå®åè¾æ¸ãã®å®è£ ã«ã¯è§¦ãã¾ããã§ããã ãã®ãç°¡æ½ããããã¯ãã«ããå®åè¾æ¸ãã¯ãåããã®ãæãã¦ãã¾ã*1ã ä»åã¯ããã®ãã¼ã¿æ§é *2ã«ã¤ãã¦æ¸ãã¦ã¿ã¾ãã å®åè¾æ¸ã§ã§ããã㨠ãããåã«å¯¾ããå®æ°æéã® rank 㨠selectã§ã*3ã rank()ã¯ãããããåã®å é ããä½ç½® k ã¾ã§ã«ã1 ã®ããããããã¤ãããã*4ã select()ã¯ãããããåã®å é ããè¦ã¦ãn åç®ã® 1 ã®ãããã®æ¬¡ã®ä½ç½®ã¯ã©ããã*5ã ããããä¾ãæãã¾ãã
ãç¥ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}