æ¬é ã§è§£èª¬ããå°æ¹ç ï¼ã¡ã»ãã³ããï¼ã¯ãæ¥æ¬ä½è¡å¸è«çï¼ã«ã»ããã ããã¤ãã ãã¡ã ããããï¼[â 1]ã®å±±æ¢¨çã«ãããå¼ç§°ã§ãããé·ãéãã®åå ãæããã«ãªãããä½æ°ãã«å¤å¤§ãªè¢«å®³ãä¸ããææçã§ãããããã§ã¯ãã®å æã»æ²æ» ã«è³ãæ´å²ã«ã¤ãã¦èª¬æããã ãæ¥æ¬ä½è¡å¸è«çãã¨ã¯ããä½è¡å¸è«ç§ã«åé¡ãããå¯çè«ã§ããæ¥æ¬ä½è¡å¸è«ï¼ã«ã»ããã ããã¤ãã ãã¡ã ãï¼ã®å¯çã«ãã£ã¦çºçããå¯çè«ç ãã§ãããããããå«ãåºä¹³é¡å ¨è¬ã®è¡ç®¡å é¨ã«å¯çææãã人ç£å ±éææçãã§ããã[3]ãæ¥æ¬ä½è¡å¸è«ã¯ãã¤ã¤ãªã¬ã¤ï¼å®®å ¥è²ãå¥åï¼ã«ã¿ã¤ãã¬ã¤ï¼ã¨ããæ·¡æ°´ç£å·»è²ãä¸é宿主ã¨ãã河水ã«å ¥ã£ãåºä¹³é¡ã®ç®èããå¸è«ã®å¹¼è«ï¼ã»ã«ã«ãªã¢ï¼ãå¯çãå¯çããã宿主ã¯ç®èçãåçºçç¶ã¨ãã¦é«ç±ãæ¶åå¨çç¶ã¨ãã£ãæ¥æ§çç¶ãåããå¾ã«ãæè«ã¸ã¨æé·ããå¸è«ãèéèå é¨ã«å·£é£ãæ ¢æ§åãæè«ã¯å®¿ä¸»ã®è¡ç®¡å é¨ã§çæ®ç£åµãè¡ããå¤æ°å¯
Modern Arabic mathematical notation is a mathematical notation based on the Arabic script, used especially at pre-university levels of education. Its form is mostly derived from Western notation, but has some notable features that set it apart from its Western counterpart. The most remarkable of those features is the fact that it is written from right to left following the normal direction of the
ããªãä½ããªãã®ã§ã¯ãªããä½ããããã®ãï¼ãï¼ãªããªã«ããªãã®ã§ã¯ãªãããªã«ããããã®ããè±: Why is there something rather than nothing?ï¼[注é 1]ã¯ãå²å¦ã®ä¸åéã§ããå½¢èä¸å¦ã®é åã§è°è«ãããæåãªåé¡ã®ä¸ã¤ãç¥å¦ãå®æå²å¦ãã¾ãå®å®è«ã®é åãªã©ã§ãè°è«ãããããªããç¡ãã§ã¯ãªãããä½ããåå¨ãããã®ãããã®çç±ãæ ¹æ ãåãåé¡ãå¥ã®å½¢ã¨ãã¦ã ããªãå®å®(ã¾ãã¯ä¸ç)ãããã®ãï¼ï¼Why is there a universe(world)?ï¼ã ããªãç¡ã§ã¯ãªãã®ãï¼ï¼Why not nothing?ï¼ã ããªãããããä½ããåå¨ããã®ãï¼(Why there is anything at all?)ã ãªã©ã¨åãããå ´åããã[注é 2]ã ç©äºã®æ ¹æ ãããªããã¨ç¹°ãè¿ãåãç¶ãããã¨ã§ããã¦ç¾ããåãã§ãããã¨ããã究極ã®ãªãã®å
æ°å¦ã«ããã¦ãã»ã¨ãã© (almost) ã¨ããèªã¯ãããå³å¯ãªæå³ã§ç¨ããããå°éç¨èªã®ã²ã¨ã¤ã§ããã主ã«ã測度 0 ã®éåãé¤ãã¦ãã¨ããæå³ã§ããããããåä½ã§ç¨ãããã¨ã¯ãã¾ããªãããã»ã¨ãã©è³ãã¨ãã㧠(almost everywhere)ããã»ã¨ãã©å ¨ã¦ã® (almost all)ããªã©ã®æ±ºã¾ãæå¥ã§ã²ã¨ã¤ã®æå³ãå½¢æããã 測度空éã«ããã¦ãããæ§è³ª P ãæºãããªãç¹ã®éåã®æ¸¬åº¦ã 0 ã§ãã (æ£ç¢ºã«ã¯ããã測度0ã®éåã«ãããå«ã¾ãã) å ´åãã»ã¨ãã©è³ãã¨ããã§ï¼è±: almost everywhereãç¥ã㦠a.e.ãä»: presque partoutãç¥ã㦠p.p.ï¼P ãæºãããã¨ãã[1]ãå®æ°ä¸ã§èãã¦ããå ´åã¯ãé常ã«ãã¼ã°æ¸¬åº¦ãç¨ããã f ããã£ãªã¯ã¬ã®é¢æ°ã¨ããã¨ãã»ã¨ãã©è³ãã¨ãã㧠f(x) = 0 ã§ããããã®ãã¨ã f(x) = 0
ãªã¹ã«ã«ã»ã¢ã³ããªã¦ã¹ï¼1913å¹´æ®å½±ï¼ åå¼å¦çç 究æ³ï¼ããããããã¦ããããã ãã»ããè±èª: typologicalãmethodï¼ã¨ã¯ãèå¤å¦ã«ãããç 究æ³ã®ã²ã¨ã¤ã§ããã èå¤è³æã¨ãã«éºç©ã®å½¢æ ã»ææã»ææ³ã»è£ 飾ãªã©ã®è«¸ç¹å¾´ã«ãã£ã¦åé¡ãããåå¼ï¼typeï¼ãã年代çãªå¤é·ããã©ããå°åçãªç¸äºæ¯è¼ããããªã£ã¦ããã®éºç©ï¼åå¼ï¼ã®æéçãªããåå¸ä¸ã®ä½ç½®é¢ä¿ãããã«åå¼ç¸äºã®é¢ä¿æ§ãæããã«ãã¦ããç 究ã®æ¹æ³ã§ãããåã«åå¼å¦ï¼typologyï¼ã¨ããããã[1]ã ãã®æ¹æ³ã¯ã19ä¸ç´å¾åã«ã¹ã¦ã§ã¼ãã³ã®èå¤å¦è ãªã¹ã«ã«ã»ã¢ã³ããªã¦ã¹ï¼1843å¹´-1921å¹´ï¼ãã«ãã£ã¦ãå欧ã®éé å¨æåã®ç 究ãªã©ããã¨ã«æå±ãããã®ã¡ãæ¥éã«ä¸ççã«æ®åãã¦ãã£ãããããã«ã¤ãã¦ãã¹ã¦ã§ã¼ãã³ã®èå¤å¦è ãã«ã¹ã»ãªã¼ããªï¼ã¹ã¦ã§ã¼ãã³èªçï¼ã¯ããå å²èå¤å¦ã¯ããã®ç 究æ³ã®ç¢ºç«ã«ãã£ã¦ã¯ããã¦ç§å¦
ã¦ã£ãããã£ã¢ã®ã«ã¼ã«ã¯è¤éã§ããããã«æªããã¨ã«ãææ¥ãçµã¤ã«ã¤ãã¦ãã¾ãã¾ãè¤éã«ãªã£ã¦ããã¾ããã§ããå¿é ããªãã§ãã ããï¼ç¹ã«æ°è¦åå è ã®æ¹ï¼ãã«ã¼ã«å ¨é¨ãè¦ããå¿ è¦ã¯ããã¾ããããã®ã«ã¼ã«ãã«ã¼ã«ãã¹ã¦ãç¡è¦ããªãããã¯ãã¨ããããã«ã¼ã«ãç¥ããªãã¦ãç·¨éã§ãããã¨ãä¿è¨¼ãããã®ã§ããã¾ãã¯ãç¾ç§äºå ¸ã®ç·¨éã楽ããã§ãã ããã ç·¨éããã¦ãããã¡ã«èªåãä»ã®äººã®ç·¨éãããã®ããä¿®æ£ããã¦ããã®ãè¦ããã¨ãã§ããã§ããããã¾ããèªåã®ç·¨éãããã®ã«ã³ã¡ã³ããã¤ããããè¦åºå ¸ãã®ããã«ããããããæ®å¿µãªãã¨ã«åé¤ããããããããããã¾ããããã®ãããªä½é¨ãéãã¦ãã¦ã£ãããã£ã¢ã®ã«ã¼ã«ã身ã«ã¤ãã¦ãã ãããç¹ã«éè¦ãªã«ã¼ã«ã«ã¤ãã¦ã¯ãWikipedia:äºæ¬ã®æ±ã«ã¾ã¨ãããã¦ãã¾ããã§ããã ãæ©ããããã®ã«ã¼ã«ãç解ãã¦ãã ããã ã¦ã£ãããã£ã¢ã§ã¯ãç¾ç§äºå ¸ãã¤ããã¨ããç®çã®ä¸ã
ãçãã®èªã¯ååã®è¨è¡é²ã¨ããããè«èªããé家ã®å¤å ¸ãèåãã«ã¯ã¿ããããååãã«ã¯ãããã«ãæ¡çãã®èªãã¿ããã®ã¿ã§ããããæ¦å½æ代å¾æã«ã¯ãã£ã¦ããã®ãèåãï¼é家ï¼ã»ãèåãï¼å家ï¼ã»ãééåãï¼æ³å®¶ï¼ãªã©ã§ã¯å¤æ°ç¢ºèªããã¦ãã[1]ã ã墨åãã§ã¯ãéå¾³çè¦ç¯ã®æã§ä½¿ãããããèåãã§ã¯èªç¶ã®çæ³ã¨ãã¦ã®çãããããã天ã¨çµã³ã¤ãã¦å¤©çã¨ãªã£ããããéãã¨ä¸¦åçã«ä½¿ããããéããå æ¬çæ¦å¿µã§ããã®ã«å¯¾ãããçãã¯åå¥çæ¦å¿µã§ããããééåãã§ã¯ãéãããæ³ãã¨ãã¦å±éããã¨ã¨ãã«ãéã¨çã¨ã®é¢ä¿ãè¦å®ãããããã§ã¯ãçãåç©åã»ç¹æ®åã®åçã§ãããã¨ãæ確ã«ããã¦ãã[1]ã çã®è¦³å¿µã¯å漢代ã®ææ³æ¸ãæ·®ååãã«ããã¦æ·±ããããä¸æ¹ãæ¦å½æ代以é漢代ã¾ã§ã«é家ã®å½±é¿ãåããå家æç®[注é 1]ã®ãªãã§ã窮çå°½æ§ãã®èª¬ãã¤ãããã¦ãå¾ä»£ã«å¤§ããªå½±é¿ãããã¼ãã[1]ã çæ°èª¬ï¼ããã
ãã®ãã¼ã¸ã¯ä»¥ä¸ã«ããåé¤ä¾é ¼ã®è°è«ãä¿åãããã®ã§ãããããªãè°è«ãå¿ è¦ãªå ´åã¯å½è©²ãã¼ã¸ã®ãã¼ãã§è¡ã£ã¦ãã ããããã®ãã¼ã¸ã¯ç·¨éããªãã§ãã ããã è°è«ã®çµæãåé¤ ã«æ±ºå®ãã¾ããã--Tietew 2007å¹´2æ27æ¥ (ç«) 06:46 (UTC)[è¿ä¿¡] 以ä¸ã®2é ç®ã«ã¤ãã¦åé¤ãææ¡ãã¾ãã ç£èé¡æå¼·è«äº - ãã¼ã é£èç®æå¼·è«äº - ãã¼ã ãããã¯ãæç«ãçç£ã«é¢ããã¨ãã»ã¤ã¨ãã¦ã¯é¢ç½ããã®ã«ãªãã§ãããããç¾ç§äºå ¸çãªè¨äºã«æé·ããè¦è¾¼ã¿ã極ãã¦èãé¡æã§ããã¨æãã¾ãï¼ã©ããæå¼·ãªã®ãå¦è¡çãªè«äºã«çºå±ããã¨ãããäºä»¶ãããã®ãªãå¥ã§ããããããã®ãããªåã¯èãã¾ãããï¼ã -- ï¼®ï½ï¼«ï½ 2007å¹´2æ16æ¥ (é) 06:50 (UTC)[è¿ä¿¡] ï¼åé¤ï¼ããããåèè ã«ããåºå ¸ç¡ãéçã- NEON 2007å¹´2æ16æ¥ (é) 07:28 (UTC)[è¿
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation. By international agreement, this uncertainty has
å米大é¸æ±å²¸ã®å°åæ å°åæï¼ã¡ãããããè±: geosynclineï¼çè«ã¯ãå°æ®»å¤åã¨å°è³ªç¹æ§ã説æããåç´å°æ®»å¤åã«é¢ããçè«ã ãããã¬ã¼ããã¯ããã¯ã¹ã«åã£ã¦ä»£ããããå¤ãçè«ã§ãããå°åæã¨ããè¨èèªä½ã¯ãçå°ã«å ç©ããå ç©å²©å±¤ãå§ç¸®å¤å½¢ãã¦éèµ·ãã¦ã§ããç«å±±ãªã©ãä¼´ãå±±èãç·å½¢ã®è°·ã表ãã®ã«ä»ã§ã使ããããã¨ããããå°åæãæ§æããå ç©å²©å¡ã¯ã褶æ²ãå§ç¸®ãæ層ãªã©ãä¼´ã£ã段éã®ãã®ã§ãããçµæ¶æ§ç«æ岩ã®è²«å ¥ãè°·ã®è»¸ã«æ²¿ã£ãéèµ·ãªã©ããä¸è¬ã«ãã®å°åæã®çµããã¨ãªãããã®å¾ã褶æ²å±±è帯ã¨ãªãã¨ãããã å°åæã¯ã山系ã®èå¥å¯è½ãªå²©å±¤ã®ç¨®é¡ã«ãã£ã¦ãããªå°åæï¼å£å°åæï¼ã¨ã¦ã¼å°åæï¼åªå°åæï¼ã«åããããï¼1949å¹´ã«ãã¼ã·ã£ã«ã»ãã¼ãçºè¡¨ããå¦èª¬ï¼ã ããªå°åæï¼miogeosynclineï¼ ã«ããããªã³ã¿ãªãªå·ã®ãã·ã¬ã³ã»ãã¤ã·ã³ï¼æé¢å³ï¼miogeosyncline大é¸å°
ã¸ã§ãã¯ï¼è±èª: jockï¼ã¨ã¯ãã¢ã¡ãªã«åè¡å½ã«ããã人éã®é¡åã®ã²ã¨ã¤ã§ãæ¥æ¬ã«ãããä½è²ä¼ç³»ã«è¿ä¼¼ããæ¦å¿µãåã«ã¢ã¹ãªã¼ãã®ç·æ§ãæãå ´åããããããã°ãã°åå½ã®ç¤¾ä¼ãã¨ãããå¦æ ¡ç¤¾ä¼ã«ããããããããã¹ãã¼ããã³ã主ã¨ãã人æ°è ã®ç·æ§ãæãã¹ãã¬ãªã¿ã¤ãã§ãã[注é 1]ãã¢ã¡ãªã«åè¡å½ã®ç¤¾ä¼ã¨ãããå¦æ ¡ç¤¾ä¼ã®ãã¨ã©ã«ãã¼ï¼ã¹ã¯ã¼ã«ã«ã¼ã¹ãï¼ã®é ç¹ã«ä½ç½®ããã¸ã§ãã¯ã¯ã対æ¦å¿µãããã¼ãã¨ã¨ãã«ãç±³å½ã®ç¤¾ä¼ããã³æåã®è±¡å¾´ã®ä¸ã¨ãã¦èªããããããä½ãã¢ã¡ãªã«ã§ã¯ãã¹ã¯ã¼ã«ã«ã¼ã¹ãã¯ãcliqueãï¼ã¯ãªã¼ã¯ãæ´¾é¥ã®æå³ï¼ã¨å¼ã°ãã¦ããã ã¸ã§ãã¯ã®è±¡å¾´ã¨ç®ãããã¢ã¡ããé¸æ ã¸ã§ãã¯ã¨ããæ¦å¿µã¯å¦æ ¡æåï¼School cultureï¼ãç¹ã«é«æ ¡æåã«æ·±ãæ ¹ããããã®ã§ããããæãã«è«ãããã¨ã¯ã§ããªãï¼#大è¡æåï¼ã ã¢ã¡ãªã«åè¡å½ã®ä¸è¬çãªå¦æ ¡ï¼ç¹ã«é«æ ¡ï¼ç¤¾ä¼ã«ãã£ã¦ã¯ãåã ã®çå¾
Duria Antiquior â A more Ancient Dorset is a watercolour painted in 1830 by the geologist Henry De la Beche based on fossils found by Mary Anning, and was the first pictorial representation of a scene from deep time based on fossil evidence. Duria Antiquior, a more ancient Dorset, was the first pictorial representation of a scene of prehistoric life based on evidence from fossil reconstructions, a
ãã®è¨äºã¯æ¤è¨¼å¯è½ãªåèæç®ãåºå ¸ãå ¨ã示ããã¦ããªãããä¸ååã§ãã åºå ¸ã追å ãã¦è¨äºã®ä¿¡é ¼æ§åä¸ã«ãååãã ãããï¼ãã®ãã³ãã¬ã¼ãã®ä½¿ãæ¹ï¼ åºå ¸æ¤ç´¢?: "é²å½¢" â ãã¥ã¼ã¹Â · æ¸ç±Â · ã¹ã«ã©ã¼Â · CiNii · J-STAGE · NDL · dlib.jp · ã¸ã£ãã³ãµã¼ã · TWL (2018å¹´7æ) ããé²ï¼å·»é²ï¼ é²å½¢ï¼ããããï¼ã¨ã¯ãé²ããã®å½¢ç¶ã«ããåé¡ãããã®ã§ãããé²ç´ï¼ãããã ãï¼ã¨ãããã ä¸çæ°è±¡æ©é¢çºè¡ã®ãå½éé²å³å¸³ãã§ã¯é²ããã®å¤§ã¾ããªå½¢ãã10ã®ãé¡ãã«åé¡ãã¦ããããããå種é²å½¢ï¼å種é²ç´ï¼ã¨å¼ã¶ãããããã®é¡ã¯ãå½¢ã®ç¹å¾´ãé²å¡ã®çµæãªã©ããããã«ã種ãã«åé¡ããããã¾ããé²å¡ã®é åãé²ã®éæ度ã«ããç´°åé¡ã¯ãå¤ç¨®ãã¨å¼ã°ãããããã«ãé¨åçãªç¹å¾´ããä»éããé²ãããå ´åã«ã¯ãå¯å¤ç¨®ãã¨ãã¦è¨ããããã¾ããå°å½¢ãªã©ã«ãã£ã¦çºçããé²ã¯ã
ä½ãææ¡ãããä»æ¥ããã©ãå¤ããã¾ããï¼ ã¦ã§ãä¸ã®å¤ãã®ã³ã³ãã³ãã¨ç°ãªããã¦ã£ãããã£ã¢ã¨ä»ã®ã¦ã£ãã¡ãã£ã¢è²¡å£ã®ããã¸ã§ã¯ãã«ããã¦å ¬éããã¦ããæç« (text) ã¯ãä¼çµ±çãªèä½æ¨©ãè¡ä½¿ã®ããæ¹ãã®ä¸ã«ã¯ããã¾ãããããã§ã¯ãªããã¦ã£ãã¡ãã£ã¢ã»ã³ãã¥ããã£ã¯ãèªç±ãªæ å ±ã®ååã®ç«å ´ã«ãã£ã¦ãã¾ã (ããã¯ã³ã³ãã¥ã¼ã¿ã½ããã¦ã§ã¢ã®åéã§ããªã¼ã½ããã¦ã§ã¢éåããªã¼ãã³ã½ã¼ã¹éåãæ確ã«ãããã©ã®ãããªç®çã§ãã£ã¦ã誰ã«ã§ãæ å ±ã®åå©ç¨ãèªãããã¨ããååã¨ç¸éãããã®ã§ã)ããã®ååã¯ã人ã ãä¼çµ±çãªèä½æ¨©ãè¡ä½¿ã®ããæ¹ãã®ä¸ã§ã¯æã¤ãã¨ã®ã§ããªãèªç±ã許諾ããã©ã¤ã»ã³ã¹ã«ãã£ã¦ãå®ç¾ããã¦ãã¾ãã ãããã¾ã§ãã¦ã£ãããã£ã¢ãé¸æããã©ã¤ã»ã³ã¹ã¯GNU Free Documentation License (GFDL) ã§ãããããã¯ããªã¼ã½ããã¦ã§ã¢è²¡å£ãä½ããã¡ã³ããã³ã¹
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}