2. ã¢ã¸ã§ã³ã lï¬â¯ IoTæ代ã®æ·±å±¤å¦ç¿ â⯠RNN â⯠VAE â⯠深層強åå¦ç¿ lï¬â¯ PFNã®åãçµã¿ â⯠ãã¢ï¼æ·±å±¤å¼·åå¦ç¿  +  ãã¼ã¿åå  +  転移å¦ç¿  +  åæ£å¦ç¿ â⯠DiMO  :  Edge  Heavy  åæ£ã¹ããªã¼ã å¦ç理ãã©ãããã©ã¼ã â⯠Chainer  :  æ°ãã深層å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯  OSS 2 3. ãã£ã¼ãã©ã¼ãã³ã°ã¨ã¯ lï¬â¯ 層ãæ·±ããå¹ ãåºããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãå©ï§â½¤ç¨ãã æ©æ¢°å¦ç¿â¼¿ææ³ lï¬â¯ 2012å¹´ï¦ã®â¼¤å¤§ãã¬ã¼ã¯ä»¥æ¥ãç 究ã³ãã¥ããã£ã®ã¿ãªãã ç£æ¥çã«å¤ã使ããã¦ãã â⯠2014ãï½2015å¹´ï¦ä¸ã«åºãããé¢é£è«ï¥â½ææ°ã¯1500ãè¶ ãã* lï¬â¯ ç»åèªè識ãâ¾³é³å£°èªè識ãªã©ã§åçãªç²¾åº¦ï¨åä¸ãæããããã® å¤ããæ¢ã«å®â½¤ç¨åããã¦ãã â⯠Googleã¯47ã®â¾èªç¤¾ãµã¼ãã¹ã§æ¢ã«å©ï§â½¤
å°æ³ããç¡æ²æ±°ãã¦ããã¾ãã åå·ããä¹ ãã¶ãã§ãã å°æ³ããã£ããæ´æ°ãé絶ãã¦ãã¾ã£ã¦ãããããªããã åå·ããããããæ°ãåãç´ãã¦ãªã¹ã¿ã¼ããã¾ãããï¼ å°æ³ãã¯ããååã¯ãªãã®è©±ããã¦ããã®ã§ããã£ãã åå·ãããã°ãã¼ã¿ã®æ°ä¸»åãã§ããã å°æ³ãããâ¦è¨æ¶ã⦠åå·ãåã®ãã¤ã¨ããã§ããã¨ããã¤ãã¹5.4ããã®ã¨ããã å°æ³ãæãåºãã¾ããï¼ åå·ãããã§åã®ä½éãªãã§ãã⦠å°æ³ããããã§ããããã®è©±ããã¦ãã åå·ããããéãã¦ã¯ãããªãã å°æ³ã風ã®ãããã§ã¯ãã©ã¹3ããã¨ããã¦ãã¾ãããã¤ã¨ããããªã¹ã¿ã¼ãã§ããã åå·ãéä¸çµéãå ±åããã¦ãã ããã10ããã¯æ¸ã£ããã§ããæ¸ã£ãã¨ããã§ãã¬ããã¢ã³ãåºå¼µãå ¥ã£ã¦ãã¾ã£ã¦â¦ å°æ³ããããã¤ã¯ãã½ããæ¬ç¤¾ã§ããï¼ åå·ãã¯ãããã¤ã¯ãã½ããæ¬ç¤¾ã¸è¡ã£ã¦ãã¾ãããããã§ã¹ãã¼ãããã³ã³ãããã¯ãªã¼ã ã±ã¼ãã¨ããããããã³ã³
ããã¼ã®ç¾¤ãããã·ãã¦ããæ¢ã By ã¨ã¬ã³Â·ããªã¼ããã³ï¼MapR Technologies ããã°ãã¼ã¿ã»ã³ã³ãµã«ã¿ã³ã Apache Mahoutã³ããã¿ã¼ï¼ ãªã©ã¤ãªã¼ç¤¾ã®å®è·µæ©æ¢°å¦ç¿ã·ãªã¼ãºã®ç¬¬2å¼¾ããããã»ããã³ã°æ°ã¨ã®å ±èãç°å¸¸æ¤åºã®ææ°ããä»é±çºè¡ããã¾ããã以åã®èä½ã§ã¯ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã«å¯¾ããå®è·µçãªã¢ããã¼ããåãä¸ããçããããããã¼ãå¿ è¦ã§ãããã¨èããã¨ããã¨ããããå§ãã¾ããã第2å¼¾ã§ã¯ãããã¼ã®ç¾¤ãã«ããã·ãã¦ãã群ãã®åãã«éãã£ã¦æ³³ãéã®ãããªç¨ã«èµ·ããããç°å¸¸å¤ã®çºè¦ã«ã¤ãã¦èãã¾ããä»åã®ç®çã¯ãã©ã®ããã«å®è·µçãªæ©æ¢°å¦ç¿ã·ã¹ãã ãæ§ç¯ããã°ç°å¸¸ãçºè¦ã§ãããæ¢ããã¨ã§ãããã®ã·ãªã¼ãºã®ç®æ¨ã¯ãå®éã®ç¾å ´ã§å¿ è¦ã¨ãããä½æ¥ãèæ ®ãã¦åé¡è§£æ±ºãæ¢ã£ã¦ãããã¨ã§ãã ãªãç°å¸¸æ¤åºã使ãã®ã§ãããã? ãã®ææ³ã¸ã®éè¦ã¯åºããæé·ãç¶ãã¦ãã¾ããç°å¸¸æ¤åº
æ å ±ç³»ã®å½éå¦ä¼ã®å¤ãã§ã¯ãç 究çºè¡¨ã«å ãã¦ãã¥ã¼ããªã¢ã«ã»ã»ãã·ã§ã³ãè¨ãããã¦ãã¾ãããã¥ã¼ããªã¢ã«ã§ã¯ããããªãã¼ãã®åºç¤ããå¿ç¨ã¾ã§ãæ±ãããè¦ç¹ãçµã£ã¦ãããããã解説ããã¦ãããåå¿è ã®å ¥éã«ã¯æé©ã§ãã å¦ä¼ã«åå ãã¦ãã¥ã¼ããªã¢ã«ãåããªãã¦ããå¤ãã®å ´åã¯ãã®å 容ãç¥ããã¨ãã§ãã¾ãããã®æ¦è¦ã¯å¿ ãä¼è°ã®ããã°ã©ã ã«æ²è¼ããã¾ãããçºè¡¨è ãã¹ã©ã¤ãã Web ã«ã¢ãããã¼ããããã¨ãå¤ããçºè¡¨ã®æ§åããããªé ä¿¡ããããã¨ãããã¾ãã ãªã³ã©ã¤ã³ã«æ å ±ããããã¨ã¯å¤ãã¨ã¯ããããããã¯åºæ¬çã«ã¯åæ£ãã¦ãã¾ããä¼è°ã®ã¦ã§ããµã¤ãã«ã¯ãã¥ã¼ããªã¢ã«ä¸è¦§ãè¼ã£ã¦ãã¾ããããããããããçºè¡¨è ã«ãããã¥ã¼ããªã¢ã«ãµã¤ãã«ãªã³ã¯ãè²¼ããã¦ãããã¨ã¯å°ãªããã¹ã©ã¤ãã®æ å ±ããªããã¨ãå¤ããããã¯é常ã«ä¸ä¾¿ã§ãã ã¨ããããã§ã2013å¹´ã®æ å ±ç³»ä¸»è¦å½éä¼è°ã§è¡ããããã¥ã¼ããªã¢ã«ã®ã¿
Tweet ãªã³ã©ã¤ã³è¬ç¾©ãµã¤ããUdemyãã«ãç§ããã¤ããä¸è©±ã«ãªã£ã¦ããåºå³¶å¤§å¦ã®çæ¨å çã®è¬ç¾©ãããã¤ãºæ¨å®ã¨ã°ã©ãã£ã«ã«ã¢ãã«ï¼ã³ã³ãã¥ã¼ã¿ãã¸ã§ã³åºç¤1ããå ¬éããã¦ããã®ã§ãç´¹ä»ãã¾ãã 以ä¸ã®ãªã³ã¯ãããæ¬è¬ç¾©ã®ãµã¤ãã«é£ã¹ã¾ãã ããã¤ãºæ¨å®ã¨ã°ã©ãã£ã«ã«ã¢ãã«ï¼ã³ã³ãã¥ã¼ã¿ãã¸ã§ã³åºç¤1ã ãã®è¬ç¾©ã¯ãæç§æ¸ãComputer Vision: Models, Learning, and Inferenceãã«æ²¿ã£ã¦ã主ã«ãã¤ãºæ¨å®ã¢ãã«ã¨(確çç)ã°ã©ãã£ã«ã«ã¢ãã«ã«ããæ©æ¢°å¦ç¿ãã¿ã¼ã³èªèã®ææ³ã®åºç¤~æ¨æºããã³ã³ãã¥ã¼ã¿ãã¸ã§ã³åéã§ã®å¿ç¨åãã«ãã¹ã¿ã¼ããããã®è¬ç¾©ã§ããè¬ç¾©åã«ãåºç¤ï¼ãã¨ã¤ãã¦ããããã«ãè¬ç¾©ã®å¯¾è±¡åè¬è ã¯ã大å¦ã§ã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ãå°éã¨ããå¦çã®B4~M1ã対象ã¨ãã¦ããã¨èãã¦ããã¨æãã¾ãããã¡ãããã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãå¦çããã§
1. ãã¤ã¸ã¢ã³ãããã¯ã¼ã¯æè¡ã¨ ãµã¼ãã¹å·¥å¦ã«ãããããã°ãã¼ã¿æ´»ç¨æè¡ æè¿ã®å¿ç¨äºä¾ãã ï¼ç¬ï¼ç£æ¥æè¡ç·åç 究æ ãµã¼ãã¹å·¥å¦ç 究ã»ã³ã¿ã¼âå¯ç 究ã»ã³ã¿ã¼é·, ãã¸ã¿ã«ãã¥ã¼ãã³å·¥å¦ç 究ã»ã³ã¿ã¼ å ¼å çµ±è¨æ°çç 究æ客å¡ææï¼æ±äº¬å·¥æ¥å¤§å¦é£æºåææ æ¬æâé½ä¸ 2. è¡åå±¥æ´ç³»ããã°ãã¼ã¿ ããã®ã¢ããªã³ã° â¢â¯ ç¶æ³ä¾åæ§ã®ããè¡åã®å±¥æ´ãã¼ã¿[購買ã»ç§»åãªã©] â¢â¯ ä¸äººåè²ã®è¤éåããçæ´»è ã®å¤æ§æ§[éä¸æ§ã»æ··å] â¢â¯ å¤åããå¤çç°å¢ã®ãã¨ã§ã®å¤§ããªä¸ç¢ºå®æ§ â¢â¯ ä»äººã®å½±é¿ãç¸äºä½ç¨ã«ãã社ä¼çè¡å 以ä¸ã®ãããªç¹æ§ãåæ ããããã°ãã¼ã¿ã¸ã®å¯¾å¿ 2 3. 大è¦æ¨¡ãã¼ã¿æ´»ç¨æè¡ â¢â¯ IDä»POSãã¼ã¿ãªã©å¤§éãã¼ã¿ãèç© â¢â¯ æ°å人è¦æ¨¡ã®ã¢ã³ã±ã¼ãã容æã«å®æ½å¯è½ â¢â¯ ãã ãããã¼ã¿åæããã¼ã¿ãã¤ãã³ã°ã ãã§ã¯ãçµ æã®æ´»ç¨ãéå®çï¼å¾æ¥éãã®æ½çã®å®æ½ã®ãã
ããè±ç²é£ãã§ããããã§ãããæ¯æ¸ã§ãã æ¨å¹´éããICML2013èªã¿ä¼ã«ç¶ããNIPS2013ã®è«æãç´¹ä»ããä¼ãéãã¾ãããå¹³æ¥å¤ã«ãé¢ããã60å以ä¸ã®ç³ãè¾¼ã¿ã50å以ä¸ã®åå ããããæ¹ãã¦æ©æ¢°å¦ç¿ã¸ã®èå³ã®é«ããè£ä»ãããã®ã¨ãªãã¾ãããä¼å ´æä¾ã«ãååé ããæ±å¤§ã®æ¦ç°æåå çãä¸å·è£å¿å çãããã³çºè¡¨è ã®çãããããã¨ããããã¾ããã ããã§ç¹çãããã®ãã@mooopanãããé¸ãã âPlaying Atari with Deep Reinforcement Learningâã§ãã 話é¡ã®Deep Neural Networkã¨å¼·åå¦ç¿ãçµã¿åããã¦ããã¬ãã²ã¼ã ã§äººéã«ãåã£ãã¨ããããã®æ¥å¯ä¸ã®ã¯ã¼ã¯ã·ã§ããè«æç´¹ä»ã ã£ãã®ã§ããããªãã¨èè ã®æå±ããDeepMind TechnologiesãGoogleã«500åå以ä¸ã§è²·åãããã¨ãããã¥ã¼ã¹ã3æ¥åé£ã³è¾¼ãã§ã
2013/7/27 "第28å ãã¼ã¿ãã¤ãã³ã°+WEBï¼ æ±äº¬âãã¼ã¿ãã¤ãã³ã°ã»æ©æ¢°å¦ç¿ã¨ãã¸ãã¹å±é ç¥ãâ"ãéå¬ãã¾ããã 第28å ãã¼ã¿ãã¤ãã³ã°+WEBï¼ æ±äº¬ ( #TokyoWebmining 28th)âãã¼ã¿ãã¤ãã³ã°ã»æ©æ¢°å¦ç¿ã¨ãã¸ãã¹å±é ç¥ãâ: Eventbrite Google ã°ã«ã¼ã ä¼å ´æä¾ãéå¶ãæä¼ã£ã¦ä¸ãã£ã ãããã£æ ªå¼ä¼ç¤¾ ã®ã¿ãªãããã©ãããããã¨ããããã¾ãããç´ æµãªãã¼ã¯ãæä¾ãã¦ãããè¬å¸«ã¡ã³ãã¼ã«æè¬ãã¾ããä¼å ´åå ãUSTREAMåå ã¨ãã«å¤ãã®æ¹ã ã®åå ãå¬ããæã£ã¦ãã¾ãã åå è IDã»ããã¯ã°ã©ã¦ã³ãä¸è¦§ï¼ åå è Twitter List: Twitter List TokyoWebmining 28th åå è ã»ãã³ã³ï¼ç¬¬28å ãã¼ã¿ãã¤ãã³ã°+WEB ï¼ æ±äº¬ ã»ãã³ã³ (ä½æãã¦ããã @komiya_atsushi ã
3. çºè¡¨ã®æ§æ ⢠æé©ååé¡ã¨ãã¦ã®å®å¼å ⢠ãªã³ã©ã¤ã³ç¢ºççæé©å â 確ççå¾é éä¸æ³ â æ£ååå¦ç¿ã«ããããªã³ã©ã¤ã³ç¢ºççæé©å â æ§é çæ£ååå¦ç¿ã«ããããªã³ã©ã¤ã³ç¢ºççæé©å ⢠ããããã¼ã¿ã«å¯¾ãã確ççæé©å 3
NEC ãã¼ã¿ãã¤ãã³ã°ã»ããã¼ã§ã¯ãæ¥æ¬é»æ°ç¤¾å¤ã®å°é家ã«ãè¬æ¼ããã¦ããã ãã çè«ã»å¿ç¨ã»ãã¸ãã¹ã¨å¹ åºãè°è«ãå®æ½ãã¦ãã¾ãã 第7åããå¦è¡æ©é¢ããã³å¦çã®æ¹ã ã«ã«ã»ããã¼ãå ¬éãããã¾ããã åå ãå¸æãããæ¹ã¯ãã¡ã¼ã«ã¿ã¤ãã«ããNECãã¼ã¿ãã¤ãã³ã°ã»ããã¼åå ç³è¾¼ãã¨ãã ãæå±: ãåå: ãå½¹è· (å¦çã®æ¹ã¯å¦å¹´): é£çµ¡å ã¡ã¼ã«ã¢ãã¬ã¹: å¸æãããã»ããã¼ : 第 XXX å ãã以ä¸ã®ã¡ã¼ã«ã¢ãã¬ã¹ã¸éä»ãã ããã ãã¼ã¿ãã¤ãã³ã°ã»ããã¼ç³è¾¼ï¼ã [email protected].nec.com 第ï¼ï¼åãè¬æ¼ãï¼NECåºå¹¹æè¡ãã©ã¼ã©ã ï¼ãæ··ååå¸å¦ç¿ã®åºç¤ããæå 端 è¬æ¼è ãï¼ä½è¤ãä¸èª ãå©æããï¼æ±äº¬å¤§å¦ï¼ããè¤å·»ãé¼å¹³ãç 究å¡ãï¼NEC Laboratories America) éå¬æ¥ãï¼2013å¹´4æ4æ¥ æ¦è¦ããï¼ å®ç¨å ´é¢ã§é常ã«
Spring Bootã«ããAPIããã¯ã¨ã³ãæ§ç¯å®è·µã¬ã¤ã 第2ç ä½å人ãã®éçºè ããInfoQã®ããããã¯ãPractical Guide to Building an API Back End with Spring BootããããSpring Bootã使ã£ãREST APIæ§ç¯ã®åºç¤ãå¦ãã ããã®æ¬ã§ã¯ãåºçæã«æ°ãããªãªã¼ã¹ããããã¼ã¸ã§ã³ã§ãã Spring Boot 2 ã使ç¨ãã¦ãããããããSpring Boot3ãæè¿ãªãªã¼ã¹ãããéè¦ãªå¤...
SACSIS2013ã§ã®ãã¥ã¼ããªã¢ã«è¬æ¼è³æã§ããæ©æ¢°å¦ç¿ã®å°å ¥ï¼èæ¯ãææ³ãçè«ãå¿ç¨ï¼ãå®è·µï¼ãªã³ã©ã¤ã³å¦ç¿+ç·å½¢åé¡ã§å®éä½ã£ã¦ã¿ãã使ãéã®èª²é¡ãçºå±ï¼åæ£+ãªã¢ã«ã¿ã¤ã ã§ã®æ©æ¢°å¦ç¿ï¼Jubatusï¼ã深層å¦ç¿ï¼Deep Neural Netï¼ã«ã¤ãã¦ã¾ã¨ãã¾ããRead less
250. Reference "Pattern Recognition and Machine Learning" Christopher M. Bishop Springer; 1st ed. 2006. Corr. 2nd printing edition (October 1, 2007) "Truth and Probability" Frank Plumpton Ramsey (1926) "The physical basis of IMRT and inverse planning" S Webb British Journal of Radiology (2003) 76, 678-689 251. Wikipedia æ¸¡è¾ºæ § http://ja.wikipedia.org/wiki/%E6%B8%A1%E8%BE%BA%E6%85 %A7 ãNo Free Lunch T
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}