Hç³»ã®OSSã¯ä½å¹´ã触ã£ã¦ããã®ã§ãããè¯ãèãã¦ã¿ãã¨Nodeã®ç¸®éãè¡ã£ããã¨ãããã¾ããã§ããã»ã»ã» â»æ°åå°ç¨åº¦ã®å°è¦æ¨¡ãªç°å¢ã§ããéç¨ãããã¨ãç¡ããã¨ã¨ãæ éãRAIDã®HDDç¨åº¦ã§ãã·ã³ã®å¤§æãããªæ éã¨ããäºè±¡ãç¡ãã£ãã®ã§ ã¨ãããã¨ã§ã縮éãè¡ãã¾ããã...
Trends and Information on AI, Big Data, New Data Management Technologies, Data Science and Innovation. âOne common struggle for data-driven enterprises is managing unnecessarily complicated data workflows with bloated ETL pipelines and a lack of native system integration.ââ John Leach I have interviewed John Leach, CTO & Cofounder Splice Machine.  Main topics of the interview are Hadoop, Big Data
5 Tips for Writing Better Python Functions This tutorial covers five simple yet effective practices for writing better and maintainable Python functions. By Bala Priya C, KDnuggets Contributing Editor & Technical Content Specialist on June 4, 2024 in Python Beginnerâs Guide to Machine Learning with Python Master the Fundamentals of Predictive Modeling with Python: An In-Depth Guide to Machine Lear
New Custom Timeline ä¿åçã®è°è«ãã¯ããã¦Twitter Custom Timelineãä½ã£ã¦ã¿ããã©ãããã©ããããã Permalink | Tagï¼ Bigtable , Google About Publickey Topics ãPublickey Topicsãã¯ãã¨ã³ã¿ã¼ãã©ã¤ãºITãã¯ã©ã¦ããWebæ¨æºãªã©ã®ãããã¯ã¹ãç´¹ä»ãããã¥ã¬ã¼ã·ã§ã³ã¡ãã£ã¢ã§ãã ããã°ã¡ãã£ã¢ãPublickeyããæ¸ãããã«éããæ å ±ãåºã«ãã¦ãã¾ãã Publickey Topicsã®æ°çæ å ±ããã§ãã¯ãã¾ãããï¼ Twitterã§ ï¼ @Publickey RSSãªã¼ãã¼ã§ ï¼ Feed Blogger in Chief Junichi Niinoï¼jniinoï¼ ITç³»ã®éèªç·¨éè ããªã³ã©ã¤ã³ã¡ãã£ã¢çºè¡äººãçµã¦ç¬ç«ãæ°ãããªã³ã©ã¤ã³ã¡ãã£ã¢ã®å¯è½æ§ã追æ±ãã¦ãã¾ã
1. DO NOT USE PUBLICLY PRIOR TO 10/23/12 ãªãApache HBaseãé¸ã¶ã®ã? Headline Goes Here Jonathan Hsieh | @jmhsieh Speaker Name or Subhead Goes Here SoHware Engineer at Cloudera | HBase PMC Member November 7th, 2013, Cloudera World Japan 2013 2. èªå·±ç´¹ä» â¢â¯ Cloudera: â¢â¯ ã½ããã¦ã§ã¢ã¨ã³ã¸ã㢠â¢â¯ Tech Lead HBase Team â¢â¯ Apache HBase commiRer / PMC â¢â¯ Apache Flume founder / PMC â¢â¯ ã¯ã·ã³ãã³å¤§å¦: â¢â¯ åæ£ã·ã¹ãã ã®ç 究 2 11/7/13 Cloudera
Facebookã®æ°ãããªã¢ã«ã¿ã¤ã 解æã®ã·ã¹ãã ã§ã¯ãHBaseã§1æ¥200å件ã®ã¤ãã³ããå¦çãã¦ããããã§ãã以ä¸ã®è¨äºã®ç¿»è¨³ã§ããHigh Scalability - High Scalability - Facebookâs New Realtime Analytics System: HBase to Process 20 Billion Events Per DayFacebookãã¾ããã£ã¦ããããå½¼ãã¯å·¨å¤§ãªãªã¢ã«ã¿ã¤ã ãã¼ã¿ã®ã¹ããªã¼ã ãå¦çãããã1ã¤ã®ã·ã¹ãã ãæ§ç¯ããã®ã ã以åã«ãFacebookã¯ãªã¢ã«ã¿ã¤ã ãªã¡ãã»ã¼ã¸ã·ã¹ãã ãHBaseã§æ§ç¯ãã¦ãã(http://highscalability.com/blog/2010/11/16/facebooks-new-real-time-messaging-system-hbase-to-store-135.ht
The Lambda architecture: principles for architecting realtime Big Data systems query = function(all data) Iâve started reading âBig Data - Principles and best practices of scalable realtime data systemsâ by Nathan Marz and James Warren. Throughout 2012 Manning have been releasing chapters as part of their early access program, and at the time of writing six chapters have been made available for do
CodeZineç·¨éé¨ã§ã¯ãç¾å ´ã§æ´»èºãããããããã¼ãã¹ã¿ã¼ã«ããããã®ã«ã³ãã¡ã¬ã³ã¹ãDevelopers Summitãããã¨ã³ã¸ãã¢ã®çããã¾ããã¼ã¹ãããããã®ã¤ãã³ããDevelopers Boostããªã©ããã¾ãã¾ãªã«ã³ãã¡ã¬ã³ã¹ãä¼ç»ã»éå¶ãã¦ãã¾ãã
LINEã®1åã¦ã¼ã¶ãæ¯ããHBaseã®ãã«ã©âHadoop Conference Japan 2013 Winterã¬ãã¼ãï¼2ï¼ 1æ21æ¥ã«éå¬ããããHadoop Conference Japan 2013 Winterãã®åºèª¿è¬æ¼ã§ã¯ãå æ¥ãã¤ãã«1åã¦ã¼ã¶ãéæããã¡ãã»ã¼ã¸ã³ã°ãµã¼ãã¹ãLINEãã§å©ç¨ããã¦ããHBaseã®å®æ ã«ã¤ãã¦ãNHN Japanã§LINEã®ã¹ãã¬ã¼ã¸ãæ å½ããä¸æä¿ä»æ°ãç´¹ä»ãè¡ãã¾ãããæ¬ç¨¿ã§ã¯ãã®æ¦è¦ãã¬ãã¼ããã¾ãã NHN Japan ä¸æ ä¿ä»æ° æãéè¦è¦ããã®ã¯ãã¹ãã¬ã¼ã¸ã®é«å¯ç¨æ§ããHBaseã¯ãã®ããã«ãã FacebookãTwitterãæãã¹ãã¼ãã§æ¥æé·ãéããLINEã1æ18æ¥ã«ã¯ãµã¼ãã¹æä¾éå§ããããã19ãµæã§1åã¦ã¼ã¶ãéæãã大ããªè©±é¡ã¨ãªãã¾ããã æ¥æé·ä¸ã®ãµã¼ãã¹ãæä¾ããããã«ããã®è£å´ã§åãã¹ãã¬
æ ªå¼ä¼ç¤¾ãã¼ã¿ããã«ã®ä¼å¢ã§ãã 2012å¹´8æ18æ¥ï¼åï¼ã«éå¬ããã¾ãã 第2å NHN ãã¯ããã¸ã¼ã«ã³ãã¡ã¬ã³ã¹ ã®çºè¡¨è³æã¨åç»ãå ¬éè´ãã¾ãã ãç»å£é ãã¾ããçæ§ããåå é ãã¾ããçæ§ãã©ãããããã¨ããããã¾ããã ã¾ããä»åãHããªæè¡ã¨è¨ãäºã§ããªã©ã¤ãªã¼ã»ã¸ã£ãã³æ§ãããHBaseãã®æ¸ç±ããã¬ã¼ã³ãé ãã¾ãããã¢ã¬ã³ã¸ãã¦ããã ãã翻訳è ã®çå·ããããªã©ã¤ãªã¼ã»ã¸ã£ãã³æ§ãããã¨ããããã¾ãã ãHãæ¬å½ãã£ãçæ§ãããã§ã¨ããããã¾ããã ããã§ã¯ãä»¥ä¸ ç¬¬2åãã¯ããã¸ã¼ã«ã³ãã¡ã¬ã³ã¹ã®éå¬ãã°ã¨ãªãã¾ãã â» ç»å£è ã®çæ§ã¨ãå·¦ãã ç°ç± æ°ãäºä¸æ°ãä¸ææ°ã濱éæ°ãæ² æ°ãä¼å¢ã§ãã ãHTML5 Animation in Mobile Web Gamesã(æ² ç¸æ» æ° NHN Koreaã Mobile Ajax ãã¼ã ) ãæ¥ã é²åããHadoopã®ãä»
1. HBase at LINE ~ How to grow our storage together with service ~ ä¸æ ä¿ä», Shunsuke Nakamura (LINE, twitter, facebook: sunsuk7tp) NHN Japan Corp. 2. èªå·±ç´¹ä» ä¸æ ä¿ä» ⢠2011.10 æ§ Japanæ°åå ¥ç¤¾ (2012.1ãã Japan) ⢠LINE server engineer, storage team ⢠Master of Science@æ±å·¥å¤§é¦è¤ç ⢠Distributed Processing, Cloud Storage, and NoSQL ⢠MyCassandra [CASSANDRA-2995]: A modular NoSQL with Pluggable Storage Engine based on
In this post we discuss what HBase users should know about one of the internal parts of HBase: the Memstore. Understanding underlying processes related to Memstore will help to configure HBase cluster towards better performance. HBase MemstoreLetâs take a look at the write and read paths in HBase to understand what Memstore is, where how and why it is used. Memstore Usage in HBase Read/Write Paths
Hi, Iâm Shunsuke Nakamura (@sunsuk7tp). Just half a year ago, I completed the Computer Science Masterâs program in Tokyo Tech and joined to NHN Japan as a member of LINE server team. My ambition is to hack distributed processing and storage systems and develop the next generationâs architecture. In the LINE server team, Iâm in charge of development and operation of the advanced storage system whi
create 'sample', 'data' ('a'..'z').each {|i| put 'sample', i, 'data:alpha', i} scan 'samples' ROW COLUMN+CELL a column=data:alpha, timestamp=1333387516755, value=a b column=data:alpha, timestamp=1333387516772, value=b ... æãããªfixtureä½æã«ã¯ããããããã§1å件ããæ°ã¯ããªã b) importtsv ã®ä½¿ãæ¹ æ¢åã®ã¤ã³ãã¼ããã¼ã«ãå©ç¨ããæ¹æ³ã å ¥åãã¼ã¿ã¯tsv,csvã«éå®ãããããhbase.jarã«å«ã¾ããImportTsvãç®çã«åè´ããã å®è¡ã«ã¯hbase.jarãã¡ã¤ã«ã®ãã«ãã¹ãå¿ è¦ãªã®ã§ãã¾ãã¯jarãlocateãªã©ã§æ¢ãã % lo
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}