4æããPFIã§åãã¦ã¾ããæµ·éã§ãã ä»æ¥ã¯åèªã®è©±ããã¾ããèªã¿ç©çãªè©±ãªã®ã§è»½ãèªãã§ãã ããã ããã¹ããã¼ã¿ãªã©ã®èªç¶æãæ©æ¢°å¦çããã¨ãã«ã¯ãã¾ãæåã«åèªã«åå²ããã¨ãããã¨ãããè¡ãã¾ããä¸è¬çã«ã¯MeCabãChasenã¨ãã£ãå½¢æ ç´ è§£æã¨ã³ã¸ã³ã«æãã¦è¡ãã¾ããå½¢æ ç´ ã¨åèªã®åºå¥ã¨ãã話ãããã®ã§ãããããã§ã¯å¤§éæã«ãé£ç¶ããæååã®åä½ããããã®æå³ã§è©±ãã¾ãã æ¤ç´¢ã¨ããæèã§ãã¨å½¢æ ç´ ã¤ã³ããã¯ã¹ã¨ããè¨èãããã¾ãããããã¯æ¤ç´¢ã®æå°åä½ãæååä½ã§ã¯ãªãã¦å½¢æ ç´ ã®åä½ã«ããã¨ãããã¨ã§ããä¾ãã°ãæ±äº¬é½ãã¯ãæ±äº¬ããé½ãã«åããããããã京é½ãã¨ããã¯ã¨ãªã«å¯¾ãã¦è¦ã¤ããã®ãé²ããªã©ã精度ãä¸ããå¹æãããã¾ããåé¢ãæ·±å»ãªæ¤ç´¢æ¼ããå¼ãèµ·ããå¯è½æ§ãããããå«ããããã¨ãå¤ãã§ããããããæ¼ãã¯æ¤ç´¢ã«éãããããã¹ããã¤ãã³ã°ãªã©ã®æèã§ãåé¡ã¨ãªããã¨ã
Unixã§ãããã¹ãä¸ã«ãããããåèªã®ãåæ°ããæ°ãããã§ãã Perlã¨ãã§æ¸ãã°åºæ¥ã¾ãããgrepã¨ãwcã¨ãããã¾ã使ãã°ãã³ãã³ãã ãã§ç°¡åã«åºæ¥ãããªæ°ãããã®ã«ãæãã¤ãã¾ããã ç°¡åã«åºæ¥ãæ¹æ³ãæãã¦ãã ããã
å ¥å\(x\)ããåºå\(y\)ã¸ã®é¢æ°ãå¦ç¿ããæ©æ¢°å¦ç¿ã®ä¸ã§ãåºåãæ§é ãæãã¦ããåé¡ã¯æ§é å¦ç¿ï¼Structured Output Learningï¼ã¨å¼ã°ããèªç¶è¨èªå¦çãã¯ãããæ¤ç´¢ã®ã©ã³ãã³ã°å¦ç¿ãç»å解æãè¡ååæãªã©å¤ãã®åéã§ã¿ããã¾ãã ä»åã¯ãã®ä¸ã§ãè¤æ°ã®æ§é æ å ±ãçµã¿åããã¦ãå¹ççã«å¦ç¿ã»æ¨è«ãã§ããå対å解ã«ããæ§é å¦ç¿ã«ã¤ãã¦ç´¹ä»ããã¾ãã # æ§é å¦ç¿ã«ã¤ãã¦ããç¥ã£ã¦ããã¨ããæ¹ã¯å対å解ã«ããæ§é å¦ç¿ã®ã¨ããã¾ã§èªã¿é£ã°ãã¦ãã ããã æ§é å¦ç¿ã®å°å ¥ æ§é ãæããåºåã®ä¾ã¨ãã¦ã ã©ãã«åãï¼åè©ãå½¢æ ç´ åã®æ¨å®ãæç³»åã«ãããã¢ã¯ã·ã§ã³ã®æ¨å®ãã»ã³ãµåï¼ æ¨ããããï¼ä¿ãåã解æã«ãããä¿ãåãæ¨ãæ§æ解ææ¨ãè«è©±åæãå æåæï¼ ã°ã©ãããï¼DAG:è¿°èªé æ§é ã«ããæå³è§£æãäºé¨ã°ã©ããããã³ã°:æ©æ¢°ç¿»è¨³ã®åèªå¯¾å¿ï¼ é ä½ä»éåï¼æ¤ç´¢ã«ãããé ä½
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}