The Fast Fourier Transform (FFT) is one of the most important algorithms in signal processing and data analysis. I've used it for years, but having no formal computer science background, It occurred to me this week that I've never thought to ask how the FFT computes the discrete Fourier transform so quickly. I dusted off an old algorithms book and looked into it, and enjoyed reading about the dece
åºéç 究室ã¯ï¼è¦è¦ã®æ å ±å¦çãåºç¤ã¨ããç»åå¦çï¼æ©æ¢°å¦ç¿ï¼ç¥çµåè·¯ã¢ãã«ï¼æ·±å±¤å¦ç¿ï¼ã¨ãã£ãåéãä¸å¿ã«ç 究ãè¡ã£ã¦ãã¾ãï¼ ç¥çµåè·¯ã¢ãã«ãæ©æ¢°å¦ç¿ããã¼ã¹ã«ï¼è¨æ¸¬ç»åãªã©ã«å¯¾ããæ å ±å¦çæè¡ãæ¥å¤éçºãã¦ãã¾ãï¼èå³ãããæ¹ã¯ãé£çµ¡ãã ããï¼ äººéãåç©ã®è³ãã©ã®ãããªæ å ±å¦çã ãããªã£ã¦ãããã¯æªã 人é¡ã«ã¨ã£ã¦æªç¥ã®é åã¨ãªã£ã¦ãã¾ãï¼ããã¯æ å ±å¦çã®æ©æ§ãç°ãªã£ã¦ãããã¨ã«èµ·å ãã¦ããã¨èãããã¾ãï¼è³ã¯æ¯è¼çåç´ãªé¨åã§ãããã¥ã¼ãã³ã¨å¼ã°ããé¨åãããªããã£ã¦ããï¼ã²ã¨ã¤ã²ã¨ã¤ã® ãã¥ã¼ãã³ã¯é«ãè½åããã£ã¦ããããã§ã精度ã®é«ãåä½ããã¦ãããããããã¾ããï¼ããã©ãããçä½ã®å é¨ã®ãã¾ãã¾ãªéé³ã«ãã£ã¦é常ã«ä¸ç¢ºããªæ å ±å¦çãããããããªãç¶æ ã«ããã¾ãï¼ ã¨ãããï¼ãã®ãã¥ã¼ãã³ãè«å¤§ãªåæ°ï¼äººéã§ç´ï¼ï¼ï¼ååï¼éã¾ãã¨äººéã®ããã«ç©ãè¦ã¦ï¼è¨èãæãï¼æèãå·¡ããã¨
C++ Advent Calender 10æ¥ç®ã®è¨äºã§ãã Boost 1.63ã§Boost.NumPyãBoost.Pythonã«ãã¼ã¸ããã¾ãã ããã«ä¼´ã以ä¸ã®è¨è¿°ã§ã¯ä¸å ·åãããããããã¾ãããä¿®æ£è¨äºãæ¸ãäºå®ã§ãã åæ© Pythonã¾ã便å©ã§ãã ã·ãã¥ã¬ã¼ã·ã§ã³ã¨ãã®çµæã®è§£æãã¡ã¤ã³ã¨ãªãã¢ã«ããã¢(è¦ç¿ã)ã§ããç§ã«ã¯ã 対話çã«ãã¼ã¿ã®å å·¥ã解æãå¯è¦åãã·ã¼ã ã¬ã¹ã«å®è¡ã§ããIPython Notebookã¯å¿ é ã§ãã æ®å¿µãªããC++ã ãã§åçã®æ©è½ãæä¾ãã¦ãããç°å¢ã¯ããã¾ãã(ãã¶ã)ã CERNãä½ã£ã¦ãROOTã®clingã¯C++ã対話çã«å®è¡ã§ããããã§ããæ å ±ãå°ãªãã¦ä½¿ã£ããã¨ããã¾ããã ã ããC++ã§æè¸çããã°ã©ãã³ã°ã§ããIC++ Notebookä½ã£ã¦ãã ããï¼åå®ï¼ã ããããªããã·ãã¥ã¬ã¼ã·ã§ã³èªä½ã¯æ°æ¥ããæ°é±éå®è¡ãããã®ã§ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}