Stable Diffusionãç»å ´ãã¦ããç¹å®ã®æ¦å¿µãçæãããç 究ãå¤ãç»å ´ãã¾ãã. æè¿ã¯LoRAã§å¦ç¿ããããããªãã®ã主æµãªæ°ããã¾ãã, åæã«ç»å ´ããTextual InversionãDreamboothã¨ãã£ãç 究ã¯å¹ åºãããã¦ãã¾ã. ããã§ã¯, 5æã®ææ°ãµã¼ãã¤è«æA Survey on Personalized Content Synthesis with Diffusion Modelsãåºã«ãããã®æ¹åæ§ã確èªãããã¨æãã¾ã. å³ã表ã¯ãã¨ããã®ãªãéã, ãã®ãµã¼ãã¤è«æããã®å¼ç¨ã¨ãªãã¾ã. ã¾ã, è«æãªã³ã¯ã¯ã§ããã ãarXivã§ãªããã® (ACMãPMLRãOpenReview)ãªã©ãè¼ãã¦ãã¾ãã, CVPR2024ã®è«æã¯arXivã«ãªã£ã¦ãã¾ã. ãã®è«æã§ã¯æ°è¦æ¦å¿µå¦ç¿ã®ãã¨ãPersonalized Content Synthesis
Technologyé¨ã®Joshã§ãã AIãæ©æ¢°å¦ç¿ã®æè¡ã¯æ¥ã é²åãã¦ãã¾ãããªãã§ããLangChainã®éçºå ããªãªã¼ã¹ãã大è¦æ¨¡è¨èªã¢ãã«ï¼LLMï¼ã¢ããªã±ã¼ã·ã§ã³éçºãæ¯æ´ãããã©ãããã©ã¼ã ãLangSmithãã¯æ³¨ç®ãã¹ãåå¨ã§ãã ãã®è¨äºã§ã¯LangSmithã®åºæ¬çãªæ©è½ãããã¼ã¿ã»ããã®è¨å®ããLLMåºåã®è©ä¾¡ã¾ã§ããµã³ãã«ã¨ã¨ãã«ãç´¹ä»ãã¾ããåå¿è ã®æ¹ããçµé¨è±å¯ãªéçºè ã¾ã§ãLLMããã¸ã§ã¯ãã«LangSmithãæ´»ç¨ããããã«ãã®è¨äºããå½¹ç«ã¦ã§ããã°å¹¸ãã§ãã LangSmithã¨ã¯ãLLMã¢ããªéçºãã¬ã¼ã ã¯ã¼ã¯ãLangChainãã®éçºå ããªãªã¼ã¹ãããLLMã¢ããªéçºæ¯æ´ãµã¼ãã¹ã§ããLangSmithã使ãã°ãLLMã¢ããªã±ã¼ã·ã§ã³ãã¼ã¿ï¼ãã§ã¼ã³ä¼è©±ãããã³ãããªã©ï¼ã®ä¿åãç·¨éãåå®è¡ã管çãå¯è½ã¨ãªãã¾ããç¾å¨ã¯OpenAIã¢ãã«ã®ã¿ãµãã¼
追è¨1ï¼ãããããéãããã ããããããï¼ãããã¨ããããã¾ãï¼ è¿½è¨2ï¼ ãã®ãããªè©±é¡ã«èå³ãããããã¸â¦é¢é£ããã³ãã¥ããã£ã¯ãã¡ãâ éå°é家åãï¼https://discord.gg/shingiyurariteisaba-1125096939344625684 å°é家åãï¼https://www.aialign.net/contact OpenAI o3ã¯ï¼äººéã¨ã¯å ¨ãç°è³ªã®æ±ç¨ç¥è½ã§ããæããããï¼ ç«¶æããã°ã©ãã³ã°Codeforcesã§ï¼äººé¡ã«æ··ãã£ã¦o3ãå ¨ä¸ç175ä½ã¨ãªã£ãã®ã¯ããã¾ããï¼ ã¬ãã®æ°å¦è ãã¡ãå ¨åã§ä½ã£ããã³ããã¼ã¯FrontierMathã§ï¼o1-previewã§ã2%ããæ£è§£ããªãã£ãã¨ãããï¼o3ã§ã¯25%ãæ£è§£ãã¦ãã¾ã£ãï¼ ãããï¼ä¸çªã®åé¡ã¯ããã§ã¯ãªãï¼ å ¨ãå¥æ¬¡å ã®ã¨ããã«ããï¼ ARC-AGIã¨ãããã³ããã¼ã¯ã ï¼ o1ã§25%ã ã£
Microsoftã¯æ¤ç´¢ã¨ã³ã¸ã³ã®Bingã§ãããã¾ã§Googleãéçºããæ©æ¢°å¦ç¿ã¢ãã«ã®ãTransformerããæ¡ç¨ãã¦ãã¾ãããããããTransformerã«éçã訪ããã¨ãã¦ã大è¦æ¨¡è¨èªã¢ãã«(LLM)ã¨å°è¦æ¨¡è¨èªã¢ãã«(SLM)ã®çµã¿åããã«ç§»è¡ããã¨çºè¡¨ãã¦ãã¾ããããã«ãã¯ã¼ã¯ããã¼ã«NVIDIAãéçºãã¦ãããTensorRT-LLMããçµ±åãããã¨ã§ãæ¤ç´¢ã®æé©åãå®æ½ããã¨çºè¡¨ãã¦ãã¾ãã Bing's Transition to LLM/SLM Models: Optimizing Search with TensorRT-LLM https://blogs.bing.com/search-quality-insights/December-2024/Bing-s-Transition-to-LLM-SLM-Models-Optimizing-Search-wi
Microsoftãè¨èªã¢ãã«ãPhi-4ãã2024å¹´12æ13æ¥ã«ãªãªã¼ã¹ãã¾ãããPhi-4ã®ãã©ã¡ã¼ã¿ã¼æ°ã¯140åã§ä¸»è¦ãªå¤§è¦æ¨¡è¨èªã¢ãã«ã¨æ¯ã¹ãã¨å°è¦æ¨¡ã§ãããæ°å¦æ§è½ã§ã¯æä¸ä½ã¯ã©ã¹ã®æ§è½ãçºæ®ãã¾ãã Introducing Phi-4: Microsoftâs Newest Small Language Model Specializing in Complex Reasoning | Microsoft Community Hub https://techcommunity.microsoft.com/blog/aiplatformblog/introducing-phi-4-microsoft%E2%80%99s-newest-small-language-model-specializing-in-comple/4357090 Microsoftã¯å°è¦æ¨¡ãã¤é«æ§è½ãª
ãã®è¨äºã¯enechain Advent Calendar 2024ã®14æ¥ç®ã®è¨äºã§ãã ã¯ããã« ããã«ã¡ã¯ãenechainã§çµ±è¨ã»æ©æ¢°å¦ç¿ã¢ãã«ã®æ§ç¯ãLLMï¼å¤§è¦æ¨¡è¨èªã¢ãã«ï¼ã®æ´»ç¨æ¨é²ãæ å½ãã¦ãã@udon_tempuraã§ãã ç§éã®ãã¼ã ã§ã¯ã以åç´¹ä»ããä¼è°åç»è¦ç´ã®ãã¦ãã¦ãæ´»ç¨ãã 社å ç¨ã®åç»ã»é³å£°æåèµ·ãããã¼ã«ãæ§ç¯ã»éç¨ãã¦ãã¾ãã æ¬è¨äºã§ã¯ããã®ç²¾åº¦åä¸ã®ä»çµã¿ã«ã¤ãã¦ç´¹ä»ãã¾ãã å®è£ ãæ¯è¼çå°ãªãå®ç¾ã§ãããããã»ãã¥ãªãã£ãªã©ã®é¢ä¿ã«ããå 製ã§æåèµ·ãããæ§ç¯ãã¦ããæ¹ã ã®åèã«ãªãã°å¹¸ãã§ãã ã¯ããã« èæ¯ã¨èª²é¡ ã·ã¹ãã è¦ä»¶ ã·ã¹ãã å®è£ ã¢ã¼ããã¯ãã£ å ¥åãã¼ã¿å½¢å¼ ãã¡ã¤ã³åºæç¨èªã®ç®¡ç å¦çããã¼ Cloud Speech-to-Textã«ããæåèµ·ãã Gemini 1.5 Flashã«ããèªèå¦ç Gemini 1.5 Proã«ã
ã¯ããã« Stable Diffusionãªã©ã®ç»åçæAIã触ã£ã¦ãããã¡ã«ã大å ã¨ãªã£ãæ¡æ£ã¢ãã«ã®çè«ãç¥ãããã¨æãåå¼·ãå§ãã¾ããã ããã§ã¯ãå人çãªç解ãæ®´ãæ¸ããã¦å¿åé²ã¨ãããã¨æãã¾ãã ï¼æ°å¦ç§ã§ã¯ãªãã®ã§ã説æããµãã£ã¨ãã¦ãã¾ãã®ã¯ç³ã訳ãããã¾ãããé°å²æ°ãããããã¨ãç®çã¨ãã¦ãã¾ããï¼ ç§ã¨åãããã«ãçè«ãå¦ã³ããæ¹ã®æå©ãã«ãªãã°å¹¸ãã§ãã æ¡æ£ã¢ãã«ã«å¯¾ããå½åã®ç解 ç§ã®æ¡æ£ã¢ãã«å¯¾ããç解ã¯ãä¸è¨ã®å³ã§äºè¶³ãã¾ãã ãèªç¶ç»åã«å¯¾ãã¦ãå°ããã¤ãã¤ãºãä»ä¸ãã¦ãããå段éãã¨ã«ã¡ãã£ã¨ã ããã¤ãºãåãé¤ããç»åããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ããçæãããã¨ããè¤æ°åç¹°ãè¿ããã¨ã§ããªãããæçµçã«ãã¤ãºã®ä¹ã£ã¦ããªãç»åãçæã§ããã å¥ã«ãã®ç解ã¯ééã£ã¦ããããã§ã¯ãªãã§ããããªãã§ãã®ææ³ã«ããã®ãããªããã®ææ³ã§ãã¤ãºã綺éºã«åãé¤ãããã®ãã¨
AIã§çæããç»åãåç»ã«ã§ããããã«ãªã£ããå½é£è¼ã®ãªãªã¸ãã«ãã£ã©ã¯ã¿ã¼ãææ¥æ¥åãããã«ã¡ã¬ããããã¦ããã£ãã¨ãããã¬ã³ãºã®å±æã¾ã§åæ ããã¦ããï¼hailuo AIã§ä½æï¼ 2024å¹´ãç»åçæAIã«èµ·ãããã¨ãæ¯ãè¿ã£ã¦ã¿ã¾ããä»å¹´ãããã¾ãããã¼ã¹ã§ç©äºãåãã¾ãããä»å¹´èµ·ãããã¨ã«æ³¨ç®ãããªããé«ç²¾ç´°åã¨é«å質åãé²ãä¸æ¹ãä¸è²«æ§ãããã«å®ç¾ããã®ãããã¤ã³ãã§ãããä¸è²«æ§æè¡ã¯ãåç»çæAIåéã®æ¡å¤§ããããããããã«ã3Dåã®å®ç¾ã¾ã§ãå¯è½æ§ã¨ãã¦è¦ãã¯ããã¾ãããããããã®æè¡ã¯ãäºãã«å½±é¿ãä¸ãã¤ã¤ãå¥ã ã«é²åããããå°éåãé²ãã§ãã¾ãããã®é£è¼ã«ããç»å ´ãã¦ããä½ä¾ã®ãã£ã©ã¯ã¿ã¼ãææ¥æ¥åããããéãã¦ãã©ã®ããã«æè¡å¤åãé²ãã ã®ããè¦ã¦ããã¾ãããã â»è¨äºé ä¿¡å ã®è¨å®ã«ãã£ã¦ã¯å³çãåç»çãæ£ãã表示ãããªããã¨ãããã¾ãããã®å ´åã¯ASCII.jpãã覧
ä¸å½ã®AIã¦ãã³ã¼ã³ãMiniMaxããéçºããAIãã£ããã¢ããªãTalkieãã大ããªè©±é¡ãéãã¦ããã AIãã£ããã¢ããªã®ãã¦ã³ãã¼ãæ°ã®ãã¼ã¿ãªã©ããã£ã¨åçãè¦ã 2023å¹´6æã«ãªãªã¼ã¹ãããTalkieã¯ãAIãã£ã©ã¯ã¿ã¼ã¨ãªã¢ã«ãªããåãã楽ãããã¢ããªã§ãAIãã¼ã ã追ã風ã«æµ·å¤ã§æ¥éã«å¢åãæ¡å¤§ããã米調æ»ä¼ç¤¾ã»ã³ãµã¼ã¿ã¯ã¼ã®èª¿ã¹ã§ã¯ãTalkieã¯ãªãªã¼ã¹ä»¥æ¥ãã£ã¨AIãã£ããã¢ããªã®ãã¦ã³ãã¼ãæ°ã§ä¸çä¸ä½3ä½ä»¥å ããã¼ããã¦ãããã©ã¤ãã«ã¨ãã¦æããããã®ã¯ä¸çä¸ã§å¤§ãããã®ãCharacter.AIï¼ãã£ã©ã¯ã¿ã¼AIï¼ãã¨ãReplikaï¼ã¬ããªã«ï¼ãã ã ä»å¹´1ï½6æã«ã¯ãç±³å½å¸å ´ã ãã§Talkieã®ç´¯è¨ãã¦ã³ãã¼ãæ°ã380ä¸åã«éããAIã¢ããªå ¨ä½ã®ä¸ã§ããChatGPTãããã¤ã¯ãã½ããã®ãCopilotããå¦ç¿æ¯æ´ã¢ããªãQuestion.aiãã«æ¬¡
æ¦è¦ DETRã«ã¯ä»¥ä¸ã®å¼±ç¹ãããã é«è§£å度ã®ç»åãæ±ããã¨ãã§ããªãã åæã«é常ã«é·ãæéãããããlike 10x ~20x slower than Faster R-CNN. é«è§£å度ç»åãæ±ããã¨ãã§ããªãã®ã¯è¨ç®éã O(H^2W^2)ã§ããããã§ãããåæã«é常ã«é·ãæéããããã®ã¯ãç»åå ¨ä½ã注ç®ããããã«åæåãããAttention Mapãæå³ã®ããã¹ãã¼ã¹ãªPixelã®ã¿ã«æ³¨ç®ããããã«å¦ç¿ããã³ã¹ããé«ãããã§ããã¨èããããã ãã®2ã¤ã®èª²é¡ãç·©åããããã«Deformable DETR = ç»åã®ä¸é¨ã«ã®ã¿æ³¨ç®ããTransformerãææ¡ããã Method Deformable Convolutionã«Inspireãããç»åã®ã¹ãã¼ã¹ãªä¸é¨ã®ç¹ã¾ããããã®ã¿æ å ±ãåãåãDeformable Attention Moduleãææ¡ã Deformab
ã¯ããã« ããã«ã¡ã¯ãKDDIã¢ã¸ã£ã¤ã«éçºã»ã³ã¿ã¼ã®ã¯ããã¨ï¼ä»®åï¼ã§ãã LLMã§ä½ããããå¢ã®ã¿ãªãã¾ãæ¤ç´¢æ¡å¼µçæã㨠RAG (Retrieval Augmented Generation)ããã£ã¦ã¾ããï¼ èªç¤¾ã§æã£ã¦ãããã¼ã¿ã使ã£ã¦ã¨ã³ã¿ã¼ãã©ã¤ãºãµã¼ããå®ç¾ãããããããã§ããã°ãã£ã¨ç¡æµãããèãã¦è²ã ãããã¨ãã¦ããããããªãã§ãããããç§ã§ãã RAGã使ã£ã¦æå³ããåºåãå¾ãããããã«ããã«ã¯ãååãªãã¼ã¿ã»ãããæºåããããã©ã¡ã¼ã¿ãå¤æ´ããªãããã¥ã¼ãã³ã°ããããªã©ãå°éãªä½æ¥ãå¿ è¦ã¨ãªãã¾ãã éçºã©ã¤ããµã¤ã¯ã«ã«ãããè©ä¾¡ã»ãã¹ãã¹ãããã§æå¹ãªãè©ä¾¡ç¨ãã¬ã¼ã ã¯ã¼ã¯ RAGAS ã使ã£ã¦ã¿ã¾ããã®ã§ãæ¬è¨äºã§ã¯ããã«ã¤ãã¦ã¾ã¨ãã¾ãã RAGASã¨ã¯ RAGãã¤ãã©ã¤ã³ãè©ä¾¡/ãã¹ãããããã®ãã¬ã¼ã ã¯ã¼ã¯ã§ãã ãã¤ãã©ã¤ã³ãæ§ç¯ããããã®ãã¼ã«ã¯å¤ã
ãã®è¨äºã®æ¦è¦ ããã«ã¡ã¯ãPharmaX ã§ã¨ã³ã¸ãã¢ããã¦ãã諸岡ï¼@hakotenï¼ã§ãã ãã®è¨äºã§ã¯ã大è¦æ¨¡è¨èªã¢ãã«ï¼LLMï¼ãæ´»ç¨ããã¢ããªã±ã¼ã·ã§ã³ã®éçºãæ¯æ´ãããã¬ã¼ã ã¯ã¼ã¯ã§ããLangChainå ã«ãããã¼ã«ãã§ã¤ã³ã®ä¸ã¤ãLangGraphã«ã¤ãã¦ãç´¹ä»ãã¾ãã LangChainãã©ã®ãããªãã®ãã«ã¤ãã¦ç¥ãããæ¹ã¯ããã²ä¸èªãã¦ããã ããã¨å¹¸ãã§ãã â» LangGraphã¯ãLangChainã¨ã·ã¼ã ã¬ã¹ã«é£æºã§ããã©ã¤ãã©ãªã§ããããã®è¨äºã§ã¯LangGraphèªä½ã®å ¥éå 容ã«ç¦ç¹ãå½ã¦ã¦ãããLangChainã«ã¤ãã¦ã¯è©³ãã触ãã¾ããã®ã§ããäºæ¿ãã ããã LangGraphã¨ã¯ LangGraphã¯ãLangChainã®ãã¼ã«ç¾¤ã«å«ã¾ããä¸ã¤ã§ãåLLMã¨ã¼ã¸ã§ã³ãã®ã¹ããããªã©ãã°ã©ãåãã¦ç¶æ 管çãè¡ãããã®ãã¼ã«ã§ãã LangGraphã¯ãã¹
ã¯ããã«æè¿ãLLMã¸ã®RAGãç¨ããææ¸ãã¼ã¿ã®é£æºçãç®çã«æµ·å¤ãä¸å¿ã«OCRãææ¸ç»å解ææè¡ã«é¢é£ããæ°ãããµã¼ãã¹ãæ´»çºã«ãªãªã¼ã¹ããã¦ãã¾ãã ãããããã®å¤ãã¯æ¥æ¬èªãã¡ã¤ã³ã¿ã¼ã²ããã«éçºããã¦ããããã§ã¯ããã¾ãããæ¥æ¬èªææ¸ã¯ãè±æ°åã«å ãã¦ãã²ãããªãæ¼¢åãè¨å·ãªã©æ°å種é¡ã®æåãèå¥ããå¿ è¦ããã£ããã縦æ¸ããªã©æ¥æ¬èªããã¥ã¡ã³ãç¹æã®ã¬ã¤ã¢ã¦ãã«å¯¾å¦ããå¿ è¦ããã£ããã¨æ¥æ¬èªç¹æã®é£ãããããã¾ãã ã§ãããä»å¾ãæµ·å¤ã®éçºè ããããã®èª²é¡ã«å¯¾å¦ãããããæ¥æ¬ã®ããã¥ã¡ã³ãç»å解æã«ç¹åãããã®ããªãªã¼ã¹ããå¯è½æ§ã¯ä½ãããã¯ãèªå½ã®è¨èªåãã®ãµã¼ãã¹ã¯èªå½ã®ã¨ã³ã¸ãã¢ãéçºãã¹ãã ã¨çè ã¯èãã¦ãã¾ãã ãã¡ãããAzure Document Intelligenceãã¯ããã¨ãããã¯ã©ã¦ããµã¼ãã¹ã®ããã¥ã¡ã³ã解æãµã¼ãã¹ã¯ããã¾ãããã¯ã©ã¦ããå©ç¨ã§ããªãã¦
CC Dash AI Chat ãµã¼ãã¹ CChat å人åãã»æ³äººåãçæAIç ä¿® åºåãã§ãã¯AI ãVOC.AIãAIã¨ã¼ã¸ã§ã³ã çæAIã¨ã³ã²ã¼ã¸ã¡ã³ãã»ãã£ããï¼ã®ã£ããåæ âæ°è¦äºæ¥éçºâç¹åã®çæAIã³ã³ãµã«Ãåè¨éçºãµã¼ãã¹ ãEpicAIãæ³äººåãAIã³ã³ãµã«ãã£ã³ã°/ãªã¼ãã¼ã¡ã¤ãAIéçº âDXç¾å½¹âãç»å£ããDXã»AIç ä¿®ãµã¼ãã¹ SAIL TDSEã®çæAIæ´»ç¨æ¯æ´ãµã¼ãã¹ ãã¼ã¿åæ/AIéçº/ã³ã³ãµã«ãã£ã³ã° CAIWA Service Viiiï¼ã«ã¤ã¯ãµã¼ãã¹ã´ã£ã¼ï¼ AIRã¯ã¨ã¹ã VectorFlux for Sales NetBot for 顧客ãµãã¼ãå®é¡å¶AIãã£ããããã NetBot for ãããã³ã°AIãã£ããããã impraiï¼ã¤ã³ãã©ã¤ï¼ çæAIå°å ¥æ¯æ´ å°å ¥ã»æ´»ç¨ãµãã¼ãã¾ã§å å®ããæ³äººåãChatGPTï½NewtonX Ve
ã°ã¼ã°ã«ã¨å½é£çµæ¸ç¤¾ä¼å±ã¯ãå½é£ç·ä¼ãã¤ã¬ãã«ã¦ã£ã¼ã¯ã®æéä¸ã¨ãªã9æ19æ¥ãæ°ããªãã¼ã¿å ±æã¤ãã·ã¢ãããUN Data Commons for the SDGsï¼SDGsã®ããã®å½é£ãã¼ã¿ã³ã¢ã³ãºï¼ããçºè¡¨ãããç·ä¼ã®é¢é£ã¤ãã³ããSDGã¡ãã£ã¢ã»ã¾ã¼ã³ãã§ã¯ãããããã®æ å½è ãç»å£ããSDGséæã«åãã¦ãã¼ã¿ãæ´»ç¨ããéè¦æ§ãã·ã¹ãã ã®æ¦è¦ã«ã¤ãã¦èªã£ãã SDGséæã»å éåã«åãã¦ãã¼ã¿ãæ´»ç¨ããéè¦æ§ã°ã¼ã°ã«ã¨å½é£ã®ååã«ãããUN Data Commons for the SDGsãï¼ä»¥ä¸ããã¼ã¿ã³ã¢ã³ãºï¼ã¯ãSDGsã«é¢é£ãããã¼ã¿ãåºãå ±æãã¢ã¯ã»ã¹å¯è½ã«ããããã®åãçµã¿ã§ãçºè¡¨ã«ä¼´ããã¼ã¿ã®æ¤ç´¢ãé²è¦§ãã§ããã¦ã§ããµã¤ããå ¬éãããã SDGã¡ãã£ã¢ã»ã¾ã¼ã³ã®ã»ãã·ã§ã³ã§ã¯ãã°ã¼ã°ã«ã®ç 究ï¼æè¡ï¼ç¤¾ä¼æ å½ä¸ç´å¯ç¤¾é·ã®ã¸ã§ã¼ã ã¹ã»ããã¤ã«æ°ã¨å½é£çµæ¸ç¤¾ä¼å±æ¿ç調æ´ã»
ããã«ã¡ã¯ï¼æ ªå¼ä¼ç¤¾AI Nestã§ãã ä»åã¯ã大è¦æ¨¡è¨èªã¢ãã«ï¼LLMï¼ã®ä¸çã«æ¿éãèµ°ããããããªããQuiet-STaRã¨ããææ°æè¡ã«ã¤ãã¦è§£èª¬ãã¾ããé£ããæ°å¼ã¯ã¡ãã£ã¨...ã¨ããæ¹ããå®å¿ãã ãããå°éç¨èªã¯ãã£ãã解説ãã¤ã¤ãQuiet-STaRã®ãããããããããããä¼ããã¾ãï¼ ã¿ã¤ãã«ï¼Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking URLï¼https://arxiv.org/abs/2403.09629 æå±ï¼Stanford University, Notbad AI Inc èè ï¼Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, Noah D. Goodman ãªããèã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}