Kubeshark 㧠Kubernetes ã® Traffic ãçºãã¦ã¿ãã/Let's Look at k8s Traffic with Kubeshark
2021/7/16ã«Cloud Native Database Meetup#1ã®çºè¡¨è³æã§ãã
æ®æ®µãã¾ããããã誰ã®å½¹ã«ç«ã¤ã®ãåãããªãè¨äºã¯æ¸ããªãã®ã§ããã解æãããã¾ã§ã®èæ¯ãOSSã«é¢ããã¨ã¦ãè¯ã話ãªã®ã§éãè °ãä¸ãã¦æ¸ãã¾ããã æ¦è¦ å¤ã®ã¢ããªã±ã¼ã·ã§ã³çµã¿è¾¼ã¿åã®ãã¼ã¿ãã¼ã¹ã¨ãã¦Berkeley DBãããã¾ããå ã ã¯ã«ãªãã©ã«ãã¢å¤§å¦ãã¼ã¯ã¬ã¼æ ¡ã«ãã£ã¦éçºããããã®å¾Oracleã«ãã£ã¦è²·åããã¦ãã¾ãããã¼ã¿æä½ã«SQLã¯ä½¿ãããã¢ããªã±ã¼ã·ã§ã³ã«åãè¾¼ãã§ä½¿ç¨ãã¾ããRDBã¾ã§ã¯å¿ è¦ãªããã©ã¡ãã£ã¨ããDBãå¿ è¦ã¿ãããªæã«ä½¿ããã¦ããããã§ããæ©è½ã¯ã·ã³ãã«ã§çµã¿è¾¼ã¿ã®ããæ§è½ãè¯ãã¨ã®ãã¨ã詳ããã¯ä»¥ä¸ã«æ¸ãã¦ã¾ãã docs.oracle.com æ¬è¨äºã§ã¯ãã®Berkeley DBã®ä¸èº«ãã©ã®ããã«å®è£ ããã¦ããã®ãã®é°å²æ°ãè¨ãã¾ããBerkeley DBã¯Btree accessãHash access, Queue/Recno access
TL;DR; Amazon Auroraã¯In-Memory DBã§ããªãDisk-Oriented DBã§ããªããIn-KVS DBã¨ã§ãå¼ã¶ã¹ãæ°å°å¹³ã«ç«ã£ã¦ããã ãã®æ¬æ°ãããããã¹ã¿ã¼ã®ã¡ã¤ã³ã¡ã¢ãªã¯ãã£ãã·ã¥ã§ãããªããWrite-Backã§ããªãWrite-Throughã§ããªãã¨ããé©å¤©åå°ã ã¤ãã§ã«å¾æ¥ã®ãã§ãã¯ãã¤ã³ãå¦çãä¸è¦ã«ãªã£ãã®ã§ã¹ã«ã¼ããããåä¸ããã 詳細ãæ°ã«ãªã人ã¯ãã®è¨äºããã§ãï¼ Amazon Aurora Amazon Auroraã¯AWSã®ä¸ã§å©ç¨å¯è½ãªããã¼ã¸ã(ï¼éç¨ãAWSãé¢åè¦ã¦ããã)ãªãã¼ã¿ãã¼ã¹ãµã¼ãã¹ã ã¦ã¼ã¶ã¼ããã¯ãã ã®MySQLããããã¯PostgreSQLã¨ãã¦æ±ãäºãã§ããã®ã§ãããã«ä¾åããæ¢åã®ã¢ããªã±ã¼ã·ã§ã³è³ç£ããã®ã¾ã¾å©ç¨ããäºãã§ãã¦ãè½ã¡ããåèµ·åãããã»ãã¥ãªãã£ãããããã¦ã³ã¿ã¤ã ãªãã§(!?)é©
ãµã¼ãç£è¦ãµã¼ãã¹Mackerelã«ããã¦éçºä¸ã®ãé«è§£å度ã»é·æéã®ãµã¼ãã¡ããªãã¯åéãå®ç¾ããããã®æ°ããæç³»åãã¼ã¿ãã¼ã¹Diamondãç´¹ä»ãã¾ããå ·ä½çã«ã¯ãAmazon ElastiCacheãAmazon DynamoDBãAmazon S3ãçµã¿åãããAmazon Kinesis Streamsã¨AWS Lambdaã«ããã³ã³ãã¼ãã³ãéãæ¥ç¶ãããé層æ§é ã®ãã¼ã¿ã¹ãã¢ã¢ã¼ããã¯ãã£ã®è¨è¨ã¨å®è£ ã解説ãã¾ãã 2018/06/05 追è¨: ãã®è¨äºã®å 容ãWSAç #2ã§ããä¸è¬çãªã¢ã¼ããã¯ãã£ã¬ãã«ã§ã®è²¢ç®ã¨ãã¦æ¸ãç´ãã¾ããã ãµã¼ãã¬ã¹æ代ã«ããããããã¸ãã¢ã¹æç³»åãã¼ã¿ãã¼ã¹ã¢ã¼ããã¯ã㣠- ããããããã° ã¯ããã« å æ¥éå¬ãããAWS Summit Tokyo 2017ã«ã¦ããæç³»åãã¼ã¿ãã¼ã¹ã¨ããæ¦å¿µãã¯ã©ã¦ãã®æã§åæ§ç¯ãããã¨ããã¿ã¤ãã«ã§ç»å£
æè¿ Cloud Spanner ã®ãã¼ã¿å ¬éã«ãã£ã¦è©±é¡ã® Spannerã æ°ã«ãªã£ã¦ããã®ã§è«æãèªãã ãåå¼·ä¼ãªã©ã§æ å ±åéãã¦ãã¾ãããæ¥æ¬èªã®ãªã½ã¼ã¹ãããã¾ã§å¤ããªãã®ã§ã調ã¹ã¦ããã£ããã¨ãçºãã¦ããã¾ãã ç°¡åã«ã¾ã¨ããã¨ç¹å¾´ã¯ä»¥ä¸ã®ã¨ããã§ãã Bigtable / Datastore ã¨é¡ä¼¼ããã¢ã¼ããã¯ãã£ãã¨ã£ã¦ãã Tablet 群ã«ãã¼ã¿ãåæ£ä¿åãã¦ãã âã®ä»çµã¿ã§ããã®ä¸ã« Lock Table ãå®è£ ãã¦åæå¦çã®ããã®ããã¯ãå¦çãã¦ãã ããã«âã®ä»çµã¿ã®ä¸ã«åæ£ãã©ã³ã¶ã¯ã·ã§ã³ããã¸ã£ã¼ãå®è£ ããã°ã«ã¼ã横æã®ãã©ã³ã¶ã¯ã·ã§ã³ã管çãã 以ä¸ã§ãç´°ãã説æãç¶ãã¦ããã¾ãã Spanner ã®å ¨ä½æ§æ Universe 㨠Zone Zone 㨠Spanserver Spanserver ã®æ§æ Spanserver 㨠Replica Rep
AWS News Blog Migration Complete â Amazonâs Consumer Business Just Turned off its Final Oracle Database Over my 17 years at Amazon, I have seen that my colleagues on the engineering team are never content to leave good-enough alone. They routinely re-evaluate every internal system to make sure that it is as scalable, efficient, performant, and secure as possible. When they find an avenue for impro
ãã®è¨äºã¯ã第2åã¦ã§ãã·ã¹ãã ã¢ã¼ããã¯ãã£ç 究ä¼ã®äºç¨¿ã§ãã ã¦ã§ãã·ã¹ãã ãã¢ãã¿ãªã³ã°ããããã«ãé«å¯ç¨æ§ãé«æ¸ãè¾¼ã¿ã¹ã±ã¼ã©ããªãã£ãã¡ããªãã¯ã®é·æä¿åãå¯è½ãªæç³»åãã¼ã¿ãã¼ã¹ãæ±ãããã¦ããã ããããå®ç¾ããããã«ãæ§è½ç¹æ§ã®ç°ãªãæ±ç¨Key-Value Store(以ä¸KVS)ãçµã¿åãããééçã«åãåããå¯è½ãªããããã¸ãã¢ã¹æç³»åãã¼ã¿ãã¼ã¹ã§ããDiamondãéçºããã ãã®è¨äºã§ã¯ãDiamondãåæ£ã·ã¹ãã ã®è¦³ç¹ã§æããã¢ã¼ããã¯ãã£ããã¼ã¿æ§é ãå®è£ ãç´¹ä»ããèå¯ã«ããFuture Workãè°è«ããã 1. ã¯ããã« 2. ã¢ã¼ããã¯ã㣠ã¢ã¼ããã¯ãã£æ¦è¦ åä½ããã¼ ãã¼ã¿æ§é KVSã®æ©è½è¦ä»¶ 3. å®è£ å®è£ æ¦è¦ KVSéã®ãã¼ã¿ç§»å ãã¼ã¿ä½ç½®ã®è§£æ±º è²»ç¨ç¹æ§ 4. èå¯ã¨ä»å¾ã®èª²é¡ Diamondã®æ¬ ç¹ å°æ¥æ©è½ 5. ã¾ã¨ã ã¹ã©ã¤ã
ãã¦ã¼ã¶ã¼ç®ç·ãã®ã·ã¹ãã ãç®æã㦠RDBãå¾æ¥ã®é層åDBã«æ¯ã¹ã¦åªãã¦ããç¹ã¯ããã¤ãæãããã¨ãã§ãã¾ãããã·ã§ã¢ã伸ã°ãããã§æã大ããªå½±é¿ã¯ãã¦ã¼ã¶ã¼ã使ãããããã¼ã¿æ§é ã¨ã¤ã³ã¿ãã§ã¼ã¹ã«ãã ãã£ããã¨ã§ããããªãã¡ãããã¼ãã«ãã¨ãSQLãã®çºæã§ãã RDBã§ã¯ããã¹ã¦ã®ãã¼ã¿ãããã¼ãã«ãã¨ãããã ä¸ã¤ã®ãã¼ã¿å½¢å¼ã«ãã£ã¦è¡¨ç¾ãã¾ãããã¼ãã«ã¯ãè¦ãç®ããäºæ¬¡å 表ãã«ä¼¼ã¦ãããã*3ãMicrosoft ExcelãGoogle ããã¥ã¡ã³ããªã©ã®ã¹ãã¬ããã·ã¼ãã使ãæ £ãã人ãè¦ãã¨ããã¼ã¿ãæ ¼ç´ããæ¹æ³ãç´è¦³çã«ã¤ã¡ã¼ã¸ããããã¨ããå©ç¹ãããã¾ããå®éãããããäºæ¬¡å 表ã«ãããã¼ã¿ç®¡çã¯ãExcelãªã©ã®ã½ããã¦ã§ã¢ãç»å ´ããåããä¸è¬çãªæ¹æ³ã ã£ããããRDBãç»å ´ããå½æã®äººã ã«ã¨ã£ã¦ãåãå ¥ãããããã®ã§ããã ãã¼ãã«ãç»æçã ã£ãç¹ã¯ãããä¸ã¤ããã¾ãã
æè¿ãä¹ ãã¶ãã«PostgreSQLã®ã¯ã¨ãªãã¥ã¼ãã³ã°ããã¦ããã®ã§ããããã®éç¨ã§ããã®æ¬ã¯ãã²ãã£ã¨å¤ãã®äººã«èªãã§ããããããã¨æ¹ãã¦æãåºããä¸åãããã¾ããã ããã¯ããSQLããã©ã¼ãã³ã¹è©³è§£ï¼åé¡ï¼SQL Performance Explainedï¼ãã¨ããæ¬ã§ãã SQLããã©ã¼ãã³ã¹è©³è§£ http://sql-performance-explained.jp/ ããã©ã¼ãã³ã¹ãã¥ã¼ãã³ã°ãç¹ã«ã¯ã¨ãªãã¥ã¼ãã³ã°ã«ã¤ãã¦èª¬æããå ´åããã®åæã¨ãªãç¥èã¯åºç¯ãªãã®ã«ãªãã¾ãã ãã®ãããèªåãé å¼µã£ã¦èª¬æããããããåªããã¨ãã¹ãã¼ãã®ã¾ã¨ããã³ã³ãã³ããæ´»ç¨ããã¦ãããæ¹ãã質ã»éã¨ãã«åªããã¤ã³ãããã«ãã¦ããã ããã®ã§ã¯ãªãããã¨æãã®ã§ãã ã¾ãããã®ãSQLããã©ã¼ãã³ã¹è©³è§£ãã¯é常ã«è¯ãæ¬ã§ããã«ãé¢ããããä¸è¬ã®åºç社ããåºã¦ããããã§ã¯ãªããããããã»ã©ç©
ããã«æ¸ããã¨ã«ãã£ã¦éä¸ã§ãããããªãããã¡ã½ããã§ãã ããã«ã¼ãã¥ã¼ã¹ãçºãã¦ããã以ä¸ã®ãããªCSç³»è¬ç¾©åç»ã®ã¾ã¨ããªãã¸ããªãæµãã¦ãã¾ããã GitHub - Developer-Y/cs-video-courses: List of Computer Science courses with video lectures. ã¸ã¼ã£ã¨æããªããä½åãããã£ã¦ã¿ãã¨ãã以ä¸ã«åºãããã¾ããã 15721.courses.cs.cmu.edu è±èªãï¼èªåã«ã¨ã£ã¦ï¼èãåãããããåç»ã®å質ï¼ç»è³ªãã¹ã©ã¤ããã¡ããã¨è¦ãããã©ããã¨ãã£ãé¨åï¼ãè¯ããã®ã§ãã¤èå³ã®ããå 容ã§åºæ¥ãã°ã¹ã©ã¤ããããããã§ã»ã»ã»ã¨ãªãã¨ãªããªãå°ãªãã§ãããããã¯ããªãè¦ãããã§ãã ã¹ã©ã¤ããæ¦å¿µå³ãé »ç¹ã«ç»å ´ããããã¦ãããã ãã§ãèãåããªãã£ãé¨åãªã©ãããªãè£å®ã§ãã¾ãã ã¹ã±ã¸ã¥ã¼ã«ãã¼ã¸
â»4/6 ãã®å¾èª¿ã¹ãæ å ±ãªã©ãè¨äºæ«å°¾ã«è¿½è¨ åæã¨ãªããã¼ãº ãµã¼ãã®è² è·æ å ±ã¨ããã¢ã¯ã»ã¹ç¶æ³ã®ãã㪠KPI ãåå¾ã»ä¿åããå¯è¦å(åç §ãã¦ã°ã©ãå)ãããã ãªã¢ã«ã¿ã¤ã æ§ãè¦æ±ãããã5å以ä¸åã®ãã¼ã¿ããè¦ãã¾ããã¿ãããªã®ã¯ãå¼ã³ã§ãªãã å¤ããã¼ã¿ã¯ãããªã«ç²¾åº¦ã¯æ°ã«ããªããã©ããã³ã°ã¹ãã³ã§ä¿¯ç°ãã¦è¦ããã便å©ã æè¿ã¯ããã°ãã¼ã¿ç°å¢ã®æç³»åãã¼ã¿è§£æããã¸ãã¹ã§ã¯ãã£ãããã¼ãºãããããã ãã©ããã£ã¡ã¯ããå°ãè¦æ±ãå¤ããã ããã§ã¯èããªããã¨ã«ããã é¸æè¢ã«ãªããããªãã® å¤ããã RRDtool Elasticsearch + Kibana Graphite + Grafana InfluxDB + Grafana ç Zabbix ä»ã«ãç¾å®çã«ã¯ SaaS ã«ä»»ããã¨ããæ段ãããã ãããã©ãããè¨ãã¨è©±ãçµãã£ã¦ãã¾ããããªã®ã§ãããã§ã¯èããªããã¨
1. ãã¼ã¿ãã¼ã¹æè¡ã®ç¾ éç¤ (db tech showcase 2013) Matsunobu Yoshinori (æ¾ä¿¡ åç¯) 2013.11.15 https://www.facebook.com/yoshinori.matsunobu 3. ãªã¬ã¼ã·ã§ãã«ã»ãã¼ã¿ãã¼ã¹ æãåºæ¬ã¨ãªããã¼ã¿ãã¼ã¹æè¡ è£½åã©ã¤ã³ã¢ãããé常ã«è±å¯ åç¨ï¼Oracle, SQL Server, DB2, Sybase, ⦠ãªã¼ãã³ã½ã¼ã¹: MySQL, PostgreSQL, Firebird, ⦠è¨è¨çè«ã¯ã©ã®è£½åã§ãã»ã¼ä½¿ãåãå¯è½ ãã¼ãã«è¨è¨/æ£è¦å, ã¤ã³ããã¯ã¹, SQL 製åç¹æã®ãã¦ãã¦ããã â ãã¼ãã£ã·ã§ã³ãç¹æ®SQLæ§æãªã© éç¨ç®¡çã¯è£½åã«ãã£ã¦å¤§ããç°ãªã ã©ãã1ã¤ã«è©³ãããã°ã2åç®ä»¥éã®å¦ç¿ã¯ããç°¡åã«ã§ãã ç´°ããè¦ã¦ããã¨ã¢ã¼ããã¯ãã£ã¯ããªãéã ãã®
æ°å ¥ç¤¾å¡å¿ èªããã¼ã¿ãã¼ã¹ã®åºæ¬ãç解ããã - ãã¼ã¿ãã¼ã¹ã¯ãªãå¿ è¦ãªã®ï¼ï¼ITproã¨ããè¨äºã«å¯¾ãããã¯ãã§æ¬¡ã®ãããªIDã³ã¼ã«ãæ¥ããï¼ç¾å¨ã¯ã³ã¡ã³ãè¿ãã¸ã®ã礼ãå ¥ã£ã¦ããã®ã§ãæåæ°å¶éã®ãããªãªã¸ãã«ã®ã³ã¡ã³ãã¯å°ãåãè©°ãããã¦ãããï¼ "ãªã¬ã¼ã·ã§ãã«ãã¼ã¿ãã¼ã¹ã¯ãã¹ã¦ã®ãã¼ã¿ã2次å ã®è¡¨å½¢å¼ã§è¡¨ç¾"ããããã®ããªã¬ã¼ã·ã§ã³ã2次å æ§é ã¨ãã誤解ã®ä¸ç¨®ãªãã ããããid:nippondanjiãããæ¸ãã¦ããããªã ãã¦ããã®çåã«å¯¾ããæ£è§£ã¯å¦ä½ãªããã®ã ãããï¼ ã¤ãå æ¥ã7ã¤ã®ãã¼ã¿ãã¼ã¹ 7ã¤ã®ä¸çãã®æ¸è©ã§æ¸ããã°ããã ãã»ã»ã» è¨ãã¾ã§ããªããã®éãã§ããã ãªã¬ã¼ã·ã§ã³ã2次å çãªæ§é ãæã£ã¦ããã¨ããã®ã¯å ¸åçãªèª¤è§£ã ãï¼ã¡ãªã¿ã«ãªã¬ã¼ã·ã§ã³ã®æ¬¡å ã¯å±æ§ã®æ°ã«çãããnåã®å±æ§ããããªã¬ã¼ã·ã§ã³ã¯n次å ãï¼ãªã¬ã¼ã·ã§ãã«ã¢ãã«ã«ã¤ãã¦ã¡ããã¨å¦ç¿ãã¦ã
åæ£ã·ã¹ãã ã«ããã¦ã¯ä»¥ä¸ã®3ã¤ã®è¦ç´ ã®ãã¡2ã¤ããåæã«æºãããã¨ãã§ããªããã¨ããCAPå®çãæå±ããã®ã¯ãEric Breweræ°ã§ããã Cï¼Consistencyï¼ä¸è²«æ§ï¼ Aï¼Availabilityï¼å¯ç¨æ§ï¼ Pï¼Tolerance to network Paritionsï¼ãããã¯ã¼ã¯åæã¸ã®èæ§ï¼ ä¸è¬ã«ãªã¬ã¼ã·ã§ãã«ãã¼ã¿ãã¼ã¹ã§ã¯ãä¸è²«æ§ï¼Cï¼ã¨å¯ç¨æ§ï¼Aï¼ãã§ããã ãä¿è¨¼ãã代ããã«ããããã¯ã¼ã¯åæã¸ã®èæ§ï¼Pï¼ãç ç²ã«ãã¦ãã¾ãããããã¯ã¼ã¯ãéä¸ã§åããã大ããé 延ããå ´åãåä½ãä¿è¨¼ãããªããªã£ã¦ãã¾ãããã§ãã ä¸æ¹ã§NoSQLã§ã¯ä¸è²«æ§ï¼Cï¼ãããå¯ç¨æ§ï¼Aï¼ã¨ãããã¯ã¼ã¯åæã¸ã®èæ§ï¼Pï¼ãåªå ããããã®ãå¤ããåæ£ã·ã¹ãã ã§ã®åä½ã«åãã¦ããã¨èª¬æããã¾ãããã®ããã«NoSQLã®èª¬æã«ãã®CAPå®çããã°ãã°å¼ç¨ããããã¨ã«ãªããNoSQLã®æ®åã¨ã¨
ãç¥ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}