Hask is not a category 06 August 2016 Andrej Bauer Computation, Programming This post is going to draw an angry Haskell mob, but I just have to say it out loud: I have never seen a definition of the so-called category Hask and I do not actually believe there is one until someone does some serious work. Let us look at the matter a bit closer. The Haskell wiki page on Hask says: The objects of Hask
Hask is the category of Haskell types and functions. Informally, the objects of Hask are Haskell types, and the morphisms from objects A to B are Haskell functions of type A -> B. The identity morphism for object A is id :: A -> A, and the composition of morphisms f and g is f . g = \x -> f (g x). However, subtleties arise from questions such as the following. When are two morphisms equal? People
Category Theory for Programmers: The Preface Posted by Bartosz Milewski under C++, Category Theory, Functional Programming, Haskell, Programming [184] Comments Table of Contents Part One Category: The Essence of Composition Types and Functions Categories Great and Small Kleisli Categories Products and Coproducts Simple Algebraic Data Types Functors Functoriality Function Types Natural Transformati
ãã®é ç®ã§ã¯ Haskell ã«é¢é£ããå 容ã«éã£ã¦åè«ã®æ¦è¦³ãä¸ãããã¨ã試ã¿ãããã®ããã«ãæ°å¦çãªå®ç¾©ã«ä½µã㦠Haskell ã³ã¼ãã示ãã絶対çãªå³å¯ãã¯æ±ããªãããã®ããããåè«ã®æ¦å¿µã¨ã¯ã©ããªãã®ããã©ã®ããã« Haskell ã«é¢é£ãããã®ç´æçãªç解ãèªè ã«ä¸ãããã¨ã追æ±ããã ï¼ã¤ã®å¯¾è±¡A, B, Cãï¼ã¤ã®æçå°, , ã¨ãããã«å¥ã®å°, ãããªãåç´ãªåãï¼ã¤ãã®è¦ç´ (ã©ã®ããã«å°ãåæãããã®å®ç¾©)ã¯ç¤ºãã¦ããªãã æ¬è³ªçã«ãåã¨ã¯åç´ãªéã¾ãã§ãããããã¯æ¬¡ã®ï¼ã¤ã®è¦ç´ ãããªãã 対象(Object)ã®éã¾ãã ãµãã¤ã®å¯¾è±¡(source objectã¨target object)ãã²ã¨ã¤ã«çµã³ã¤ããå°ã®éã¾ãã(ãããã¯arrowã¨å¼ã°ãããã¨ãããããHaskellã§ã¯ããã¯å¥ã®æå³ãæã¤ç¨èªãªã®ã§ãããã§ã¯ãã®ç¨èªãé¿ãããã¨ã«ããã) f ãã½ã¼ã¹ãªã
ã¢ããã¸ã®è¿éã»Haskell ããã®å¯é ä¸æç¿å¾â 2007 å¹´ 1 æ 26 æ¥ æ¬ç¨¿ã®è¶£æ¨ åè«ã®ã¢ããã¨ããã°ã©ãã³ã°è¨èª (Haskell) ã®éã«ã¯ã©ã®æ§ãªé¢ä¿ãããã®ãï¼ãã®åãã«çããã ãã«ã¯ï¼å½ç¶ã ãï¼å°ãªãã¨ãã¢ãããç解ã§ããç¨åº¦ã«åè«ãç¥ããªããã°ãªããªãï¼æ¬ç¨¿ã¯ï¼åè«ã®ç¥ èãå ¨ããªãã¨ããããï¼ã¢ãããç解ããã¾ã§ã®ï¼æçã³ã¼ã¹ã®éã®ãããã©ã (第 1,2 ç« )ï¼ãããå æã«ã㦠Haskell ã¨åè«ã¨ã®é¢ä¿ãèå¯ãã (第 3 ç« )ï¼èªè ã«ã¯åè«ã®ç¥èãè¦æ±ããªããï¼Haskell ã® ææ³ã®åºæ¬çãªç解ã¯åæã¨ãã¦ããï¼ã¾ãï¼åè«ã«é¢ãã¦ã¯ï¼ããã¾ã§ããã¢ããã¸ã®æçã³ã¼ã¹ããªã® ã§ï¼ç±³ç°ã®è£é¡ï¼æ®éæ§ï¼ã³ã³ãåï¼æ¥µéãªã©ã®éè¦ãªæ¦å¿µã¯è§£èª¬ãã¦ããªãï¼ 1 åºç¤ç¥èã®æºå å®ç¾© 1 (ã¡ã¿ã°ã©ã metagraph) ã¡ã¿ã°ã©ãã¯å° (arrow
https://public.me.com/yusuke1984/ja/çºè¡¨è³æã¯ããã«ããã¦ã¾ãããustã¯éä¸ã§éåãã¡ãã£ãã¿ãããªã®ã§è¨ãããã£ããã¨çºãã¨ãã¾ãã¨ãä»åã¯çµå±ããã°ã©ã ãããè¨ç®ãã話ããããã£ãã®ã§ãããé¢æ°ããã°ã©ãã³ã°ã§ã¯ã宣è¨çã«è¨è¿°ãããé¢æ°ã®å®ç¾©å¼ãå®è¡å¯è½ãªä»æ§ã¨å¼ã¹ãã»ã©åããããããªããã¨ãããã¾ããããããªãããã®ããã°ã©ã ã¯ç¾å®ã®åé¡è§£æ±ºã§ç¨ããã®ã«ååãªã»ã©é«éã§ã¯ãªãããããã¾ãããã¨ããã§åç §ééæ§ãä¿ããã¦ããã¨ãããã°ã©ã ãå½¢æããå¼ããããã¨çããå¤ãæã¤å¼ã¨ç½®ãæãã¦è¡ããã¨ãã§ãã¾ããããã§ãã¾ãé¢æ°åè¨èªãç¨ãã¦ç°¡æ½ã§ææ¾ãªåé¡ã®è¨è¿°ãè¡ããããããããã®é¢æ°åè¨èªä¸ã§æ¢ã«è¨¼æããã¦ããå®çãç¨ãã¦ãå¼å¤å½¢ã«ãã£ã¦å¹ççãªå®è£ ãå°ãåºãã¨è¨ãææ³ãèãããã¾ããPearls of Functional Algorithm D
Here is some advice, gained through my own trial and error, on how to teach yourself basic category theory. Â This advice will probably be useful only if you are like me, i.e. a computer scientist and Haskell programmer without a strong background in advanced math. The development of category theory was motivated by problems in the mathematical field of abstract algebra, and most of the literature
In this article, we explain how monoids enable one and the same data structure, the finger tree, to implement virtually any other data structure; they arise by different choices of monoids. The technique is discussed using the examples of a list with random access and a priority queue. This post grew out of the big monoid discussion on the haskell-cafe mailing list. Introduction A very powerful ap
Haskell is a great language for constructing code modularly from small but orthogonal building blocks. One of these small blocks is the monoid. Although monoids come from mathematics (algebra in particular) they are found everywhere in computing. You probably use one or two monoids implicitly with every line of code you write, whatever the language, but you might not know it yet. By making them ex
735 ï¼ããã©ã«ãã®åç¡ããã ï¼2007/02/15(æ¨) 00:11:39 >>733 3è¡ã§èª¬æããã®ã¯ä¿ºã«ã¯ç¡çï¼ ã¾ãå®ç¾©5ï¼ããã¯å®éã«æãåããã¨è¦ãã¦ããã®ã§ï¼ å ·ä½ä¾ã§ããã®ãè¯ãã¨æãï¼ä»¥ä¸ã¯ãã® pdf ã«ãããä¾ï¼ 1. ãªã¹ãå½æ ã»å A ã«å¯¾ã T A 㯠A ã®ãªã¹ããä½ãï¼ T A = [A] ã»é¢æ° f :: A -> B ã«å¯¾ã T f :: [A] -> [B] ã¯æ¬¡ã®é¢æ°ãä½ãï¼ T f = map f ã»Î¼_X 㯠X åã®ãªã¹ãã®ãªã¹ãããªãã㦠X åã®ãªã¹ããä½ãï¼ Î¼_X = concat ã»Î·_X 㯠X åã®å¤ x ããããã ããããªã [X} åã®ãªã¹ã [x] ãä½ãï¼ Î·_X = singleton = (:[]) ããããå³ã«ä»£å ¥ãã¦ï¼ã¡ããã¨å¯æã«ãªããã¨ã確èªãããããï¼ 736 ï¼ããã©ã«ãã®åç¡ããã ï¼2007/0
In the followings, this example will be used to illustrate the notion of natural transformation. If the examples are exaggerated and/or the definitions are incomprehensible, try #External links. Definition Let C, D denote categories. Let Φ,Ψ:CâD be functors. Let X,YâOb(C). Let fâHomC(X,Y). Let us define the η:ΦâΨ natural transformation. It associates to each object of C a morphism of D in the foll
Category theory can be helpful in understanding Haskell's type system. There exists a "Haskell category", of which the objects are Haskell types, and the morphisms from types a to b are Haskell functions of type a -> b. The Haskell wikibooks has an introduction to Category theory, written specifically with Haskell programmers in mind. Definition of a category A category consists of two collections
â [Haskell] The Typeclassopediaã訳ãã¾ãã The Monad.Readerã®Issue 13ã«æ²è¼ãããThe Typeclassopediaã¨ããè¨äºããFunctor, Monad, Monoid, Applicative, Foldable, Traversable, Arrowã¨ãã£ããããªåã¯ã©ã¹ã«ã¤ãã¦è¯ãã¾ã¨ã¾ã£ã¦ãã¦ããã®ããããç¥ãããæã®åã£æããã«ãªãããã ã£ãã®ã§ç¿»è¨³ãã¦ã¿ã¾ããã ä½è ã®Brent Yorgeyããããã許å¯ãããã ããã®ã§å ¬éãã¾ãã翻訳ã«æ £ãã¦ããªãã®ã§å¤ãªæ¥æ¬èªï¼ç¹ã«å°éç¨èªã®æ¥æ¬èªè¨³ã¯ããªãæªããï¼ããã£ãããããããééã£ã¦ãããããããããã¾ããã®ã§ãä½ãè¦ã¤ãããã³ã¡ã³ããé ããã¨å©ããã¾ãã â [Haskell] The Typeclassopedia by Brent Yorgey <first
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}