@ryoppy ããã«å ãè¶ããã¦ãã¾ã£ããããã¡ãã¯ãã¯ããããªãã¦ç·å½¢ååæ³ã§ãã£ã¦ã¿ã¾ãã å®å¼å ãªãªã¸ãã«ã®ãºã³ãã³ãã¨ã·ã¯ ããºã³ãããã³ãã®ãããããã©ã³ãã ã§åºåãç¶ãã¦ããºã³ãããºã³ãããºã³ãããºã³ãããã³ãã®é åãåºããããã»ã¨ã»ã·ï¼ãã£ã¦åºåããå¾çµäºã£ã¦é¢æ°ä½ã£ããæºç¹ã§åä½è²°ã£ã¦ã ã§ãããä»åã¯åã¬ãã«ã§å®è£ ãããã®ã§ãããå°ãåé¡ãå®å¼åããå¿ è¦ãããã¾ãã ããã§ã¯ã以ä¸ããºã³ãã³ãã¨ã·ã¨å®ç¾©ãã¦è§£ããã¨ã«ãã¾ãã å®æ°A, C, Mããã³åæå¤$X_0$, é¾å¤Tãä¸ãã次ã®å¼ã§ãºã³ãã³å{$Zn$}ãçæãã (ç·å½¢ååæ³) $X_{n+1} = (AX_n+C)modM$ ã«å¯¾ãã$Xn >= T$ãªããºã³, $Xn < T$ãªããã³ $Z_{n-3}, Z_{n-2}, Z_{n-1}, Z_{n}$ = ãºã³, ãºã³, ãºã³, ãã³ãã¿ãã$n$ã
{{#tags}}- {{label}}
{{/tags}}