èªç¶è¨èªå¦çã«ããã¦Sequence-to-Sequenceã¢ãã«ãããã¦Attentionã¯å¤§ããªå½±é¿ãä¸ãã¦ãã¾ããã ãã¾ãSequence-to-Sequence + Attentionã¢ãã«ã¯èªç¶è¨èªå¦çã¨ãã£ã¼ãã©ã¼ãã³ã°ãèªãä¸ã§ã¯æ¬ ãããªãåå¨ã¨ãªãã¤ã¤ããã¾ãã è¿å¹´ã®èªç¶è¨èªå¦çã§ã¯ãã®Sequence-to-Sequenceã¨Attentionããã¼ã¹ã«ããã¢ãã«ãå¤ãææ¡ããã¦ãã¾ãã ãã®è¨äºã§ã¯Sequence-to-Sequenceããã¼ã¹ã¨ããã¢ãã«ãã©ããã£ãé²åãéãã¦ããããæ´å²ã追ããªããã¾ã¨ãã¦ãããã¨æãã¾ãã Sequence-to-Sequenceã¢ãã« (2014) Sequence-to-Sequenceã¢ãã«ã¯Sequence to Sequence Learning with Neural Networksã®è«æã§ææ¡ããããSeq2
Sequence-to-Sequence(Seq2Seq)å¦ç¿ã¯ãä»»æé·ã®å ¥ååããä»»æé·ã®åºååãåºåãããããªå¦ç¿ã®ãã¨ã§ãNeural Networkã®æ çµã¿ã§æ±ãæ¹æ³ãææ¡ããã¦ãããçµæãå ±åããã¦ãã¾ããéãªã¡ã¢ã å ¥åã»åºååã®ä¾ (èªç¶)è¨èªå¦çç³» æ©æ¢°ç¿»è¨³(翻訳å ->翻訳å ) [1409.3215] Sequence to Sequence Learning with Neural Networks [1406.1078] Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation http://www.slideshare.net/yutakikuchi927/learning-phrase-representations-using-rnn-
@tkngueã¨å ±è TL;DR NMTã試ãã¦ã¿ã¾ãã. 翻訳çµæãè¦ãã¨ããã¾ããã£ã¦ãã翻訳ã¯é©ãã®çµæã§ãã. ãã ,å 容èªãã¨ãã§ããªãééãããããã¦ãããã®ããã£ãããã¦é¢ç½ãã£ãã§ã. æ¦è¦ __"ã§ããã·ãã¼ã«ãã"__ã®æ³¢ãæ©æ¢°ç¿»è¨³ã«ãæ¥ã¦ã㦠大ããªãã©ãã¤ã ã·ããã«ãªãã¤ã¤ããã¾ã. ãã®å§åçãªè¡¨ç¾è½åã®é«ããããé«ä¾¡ãªGPGPUã大éã«ãªãã¨è©±ã«ãªããªããéæã¡ã²ã¼ã§ããã㨠ã è¨å¤§ãªãã¤ããã©ã¡ã¼ã¿ï¼å¦ç¿ã®éã®è¨å®ã®çµã¿åããï¼ã åå¨ãããã¨ãã ããããã®å«ã ãªã¼ãã¨æãã¤ã¤ããããããããå¾ãªãç¶æ³ã«ãªã£ãã®ã§è§¦ã£ã¦ã¿ã¾ãã. å®éã«ããã£ã¦ã¿ã¦, ãã£ã±ãåãã£ãã®ã§ æ稿ãã次第ã§ã. æ¬ç¨¿ã§ã¯, åé å¸å¯è½ãªå¯¾è¨³ã³ã¼ãã¹KFTTã対象ã«æ¥è±ç¿»è¨³ããã¥ã¼ã©ã«ããã翻訳(NMT)ã§è©¦ãã¦ã¿ã¾ã. å ãã¦, ããã¾ã§ã®ãã¬ã¼ãºãã¼ã¹ã®çµ±è¨çæ©æ¢°ç¿»è¨³ã®å ¸
ä¸å³ã®åè§ã¯RNNã»ã«ã表ãã¦ãã¾ããã¾ããããã®åè§ã¯ãæãä¸è¬çã«ã¯GPUã»ã«ãããã¯LSTMã»ã«(説æ㯠RNNãã¥ã¼ããªã¢ã« ãåç §ã®ãã¨)ã表ãã¦ãã¾ããã¨ã³ã³ã¼ãããã³ãã³ã¼ãã¯éã¿ãå ±æããããããã¯ãããä¸è¬çã«ã¯ãç°ãªããã©ã¡ã¼ã¿ã»ããã使ç¨ãã¾ããå¤å±¤ã»ã«ã sequence-to-sequence ã¢ãã«ã«ããã¦ããã¾ã使ããã¦ãã¾ããä¾ï¼ 翻訳åã Sutskeverã»ã 2014å¹´ ( PDF ) ããã§è¡¨ããã¦ããåºæ¬çãªã¢ãã«ã«ããã¦ãããããã¤ã³ãããã¯ããã³ã¼ãã«å¼ãç¶ãããå¯ä¸ã®ãã®ã§ãããåºå®ãµã¤ãºã®ãã¯ãã«ã«ã¨ã³ã³ã¼ã ãããªããã°ãªãã¾ãããã¤ã³ãããã¸ã®ç´æ¥ã¢ã¯ã»ã¹ããã³ã¼ãã«ä¸ããããã«ã注æã¡ã«ããºã (attention mechanism)ã¯ã Bahdanauã»ãã2014 ( PDF )ã«ã¦å°å ¥ããã¾ããã注æã¡ã«ããºã (attenti
èæ¯ ããæ¥ï¼ç§ã¯æ©æ¢°ç¿»è¨³ã«èå³ãæã£ãï¼ ï¼è±èªã«è¦ããæ¥æ¬ã®ç 究è ã®å£°ãèãããããããããªããï¼åå¼·ä¼ã®æºåã«è¿½ããã¦ãããããããããªãï¼ï¼ ãããç§ã¯éå¤æ¼¢ãªã®ã§ï¼encoder-decoderã¢ãã«ã® "ãã®" å³ãèªããã¨ãã§ããªãã£ãï¼ å æ¥æ°æã¡ãæ´ããã¨ãã§ããã®ã§ï¼èªåãªãã«åã¿ç ãããã®ãè¨é²ã»å ±æããããã«ãã®è¨äºãæ¸ããï¼ å 人ã®è©³ç´°ãªè¨äº http://qiita.com/odashi_t/items/a1be7c4964fbea6a116e RNNã®å³ã翻訳 翻訳ã¾ã§ã®æµããå¥è¦ç¹ããæããï¼ encoder-decoderã¢ãã«ã«ãã£ã¦ãå½¼ 㯠走ããããHe runsãã¨ç¿»è¨³ããã¾ã§ã®æµãã¯ï¼ä»¥ä¸ã®ããã«ãªã£ã¦ããï¼ encodeå´ã®å³ã«ããã¦ï¼æ¥æ¬èªã®ç»å ´é åºãodashi_tããã®å³ã¨ã¯éã«ãªã£ã¦ããï¼ éé ã«å ¥åããã¨å®é¨çã«è¯ãçµæãå¾ããã¦ãã
Sequence to Sequence Learning with Neural Networks Ilya Sutskever Google ilyasu@google.com Oriol Vinyals Google vinyals@google.com Quoc V. Le Google qvl@google.com Abstract Deep Neural Networks (DNNs) are powerful models that have achieved excel- lent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequ
This tutorial: An encoder/decoder connected by attention. While this architecture is somewhat outdated, it is still a very useful project to work through to get a deeper understanding of sequence-to-sequence models and attention mechanisms (before going on to Transformers). This example assumes some knowledge of TensorFlow fundamentals below the level of a Keras layer: Working with tensors directl
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}