Code Archive Skip to content Google About Google Privacy Terms
ããã¯ãããï¼ ã¨ããããã§Twitteræ¤ç´¢ã3åé«éåããã¨ããè¨äºã翻訳ãã¦ã¿ã¾ãããTwitter Engineering: Twitter Search is Now 3x Faster2010å¹´æ¥ãTwitterã®æ¤ç´¢ãã¼ã ã¯ãæã ã®å¢ãç¶ãããã©ãã£ãã¯ã«å¯¾å¿ããã¨ã³ãã¦ã¼ã¶ã«ã¨ã£ã¦ã®é 延ãæ¸ãããæã ã®ãµã¼ãã¹ã®å¯ç¨æ§ãåä¸ãããæ°ããæ¤ç´¢ã®æ©è½ãç´ æ©ãéçºã§ããããã«ãããããæ¤ç´¢ã¨ã³ã¸ã³ãæ¸ããªããä½æ¥ãå§ããã ãã®åªåã®ä¸é¨ã¨ãã¦ãæã ã¯æ°ãããªã¢ã«ã¿ã¤ã æ¤ç´¢ããªãªã¼ã¹ããæ¤ç´¢ã®ããã¯ã¨ã³ããMySQLããLuceneã®ãªã¢ã«ã¿ã¤ã çã«å¤æ´ãããããã¦å é±ãæã ã¯Ruby-on-Railsã«åã£ã¦ä»£ããããã³ãã¨ã³ãããã¼ã³ããããæã ãBlenderã¨å¼ã¶Javaãµã¼ãã¼ã§ãããæã ã¯ãã®å¤æ´ã«ãã£ã¦æ¤ç´¢ã®ã¬ã¤ãã³ã·ã3åã®1ã«ãªããæ¤ç´¢æ©è½ã®éçºãä¿é²ã§ãããã
GFS, the Google File System, sits as the backbone of the entire Google infrastructure. However, for many it is a mystery, especially for those lucky enough to be more acquainted with high-level python code than low-level C operating system sources. But have no fear, we shall break through the veil and describe an implementation of GFS in 199 lines of python. Naturally, you may want to read about t
freedom from web 2.0's monopoly platforms definition Also known as "serverless", "client-side", or "static" web apps, unhosted web apps do not send your user data to their server. Either you connect your own server at runtime, or your data stays within the browser. advantages compared to native (iOS, Android) apps web apps work on any device, no matter which platform or provider you can get apps f
ãªã¢ã¯ãã£ãããã°ã©ãã³ã°ã¯ããæéã¨ã¨ãã«å¤åããå¤ãï¼ãæ¯ãèããå士ã®é¢ä¿æ§ãè¨è¿°ãããã¨ã§ããã°ã©ãã³ã°ãè¡ããã©ãã¤ã ã§ãã GUIãªã©ã®ããã«ã¤ã³ã¿ã©ã¯ãã£ããªã·ã¹ãã ããã·ãã¥ã¬ã¼ã·ã§ã³ãã¢ãã¡ã¼ã·ã§ã³ã®ããã«ãã¤ãããã¯ã«ç¶æ ãå¤åãããããªã·ã¹ãã ã宣è¨çã«è¨è¿°ãããã¨ãã§ãã¾ãã ãããã®ãå¤åããç¶æ ãããå¤é¨ã¨ã®ããã¨ãããæ¯é çãªã·ã¹ãã ã¯ãç´ç²é¢æ°åè¨èªãããã®å¼·ã¿ãçºæ®ãã«ããé¨åã§ãããã¾ãã æ¬ç¨¿ã§ã¯ããªã¢ã¯ãã£ãããã°ã©ãã³ã°ãå¯ä½ç¨ãå«ãç³»ã宣è¨çã«è¨è¿°ãããã¨ãå¯è½ã«ããç¶æ ã®ç®¡çã¨ããåä»ãªåé¡ããããã°ã©ããéæ¾ããå¯è½æ§ããããã¨ã示ãããã¨æãã¾ãã ï¼å²ã¨ç¬èªç 究ã«åºã¥ã解éã°ãããªã®ã§ãã®ç¹ãäºæ¿ãã ããããã¨ä¾ã¨ãã¦ã§ã¦ããã³ã¼ãã¯ãPythonãã¼ã¹ã®æ¬ä¼¼ã³ã¼ãã§å ·ä½çãªã©ã¤ãã©ãªã«åºã¥ããã®ã§ã¯ããã¾ãããï¼ Why Reactiv
Facebookãæ°ãããµã¼ãã¹ãMessagesãã®åºç¤ã¨ãã¦ãNoSQLãã¼ã¿ãã¼ã¹ã®ãHBaseããé¸æãããã¨ããå æ¥ã®è¨äºãFacebookãæ°ãµã¼ãã¹ã®åºç¤ã«ããã®ã¯ãMySQLã§ãCassandraã§ããªããHBaseã ã£ããã§ç´¹ä»ãã¾ããã HBaseã¯ãFacebookã«ããã¨æ¬¡ã®ãããªç¹å¾´ãåãã¦ããã¨èª¬æããã¦ã¾ãã è² è·ã«å¯¾ãã¦é常ã«é«ãã¹ã±ã¼ã©ããªãã£ã¨æ§è½ãçºæ® Cassandraãããã·ã³ãã«ãªConsistency Modelï¼ä¸è²«æ§ã¢ãã«ï¼ãåãã¦ãã èªåãã¼ããã©ã³ã¹ããã§ã¤ã«ãªã¼ãã¼ãå§ç¸®æ©è½ ãµã¼ãã¼ãã¨ã«æ°ååã®ã·ã£ã¼ããå²ãå½ã¦å¯è½ããªã©ãªã© ãã®HBaseã¯ã©ã®ãããªãã¼ã¿ãã¼ã¹ãªã®ã§ããããï¼ æ å ±ãéãã¦ã¿ã¾ããã HBaseå ¥éã®ãã¬ã¼ã³ãã¼ã·ã§ã³ æåã«ç´¹ä»ããã®ã¯ãHBaseã¨ãã³ã¸ã§ãªã¹ããTatsuya Kawanoæ°ã®ãã¬ã¼ã³
Wikipediaã¨ããã°ä¸çã§ç¬¬5ä½ã®è¨ªåè æ°ãèªã巨大ãµã¤ãã§ãããã·ã¹ãã éå¶ã«æºãã人éã¯ä¸çã§ããã6人ããããããã¯ãã©ã³ãã£ã¢è¾¼ã¿ã¨ããæãã¹ãå°äººæ°ã§ã第4ä½ã®Facebookã®ãµã¼ãæ°ã3ä¸å°ãè¶ ãã¦ããã®ã«å¯¾ãã¦ãWikipediaã¯ããã350å°ã§éç¨ãã¦ããâ¦â¦ãªã©ã¨ãããããªæãã§ãç¥ããããä»ã®Wikipediaã®å®æ ããKOF2010ãã«ã¦æ¬æ¥è¡ãããè¬æ¼ãWikipedia / MediaWiki ã«ãããã·ã¹ãã éç¨ãã§æãããã¾ããã ç»å£ããã®ã¯Wikipediaãéå¶ããWikimedia財å£ã®ã¨ã³ã¸ãã¢ã§ããRyan Laneæ°ã§ã100å¸ãã座å¸ã¯æºå¸ã«ãªããé£ã®ä¸ç¶ã®é¨å±ã¾ã§äººãããµãã¦ããã»ã©ã®çæ³ã£ã·ãã§ãèªãããå 容ããªããªãåèã«ãªããã¨ãå¤ããä»å¾ã®GIGAZINEãµã¼ãã«ãæ´»ãããããªå 容ã§ããã ã¨ããããã§ããWikipedia
大è¦æ¨¡åæ£å¦çã®ãã¬ã¼ã ã¯ã¼ã¯ã¨ãã¦ã°ã¼ã°ã«ãéçºããMapReduceå¦çãããã®ãªã¼ãã³ã½ã¼ã¹å®è£ ã§ããHadoopãæ¥æé·ãããã¸ãã¹ã®åéã§ã®åæ¥å©ç¨ãç«ã¡ä¸ããå§ãã¦ãããã¨ã¯ãPublickeyã§ãä½åº¦ãè¨äºã§ç´¹ä»ãã¦ãã¾ããã Hadoopã表è¨ç®ã®ããã«ä½¿ãããInfoSphere BigInsightsããIBMãçºè¡¨ ã°ã¼ã°ã«ã«ããMapReduceãµã¼ãã¹ãBigQueryããç»å ´ãSQLã©ã¤ã¯ãªå½ä»¤ã§å¤§è¦æ¨¡ãã¼ã¿æä½ Hadoopã¯ä¼æ¥ã®ããã®æ°ããªæ å ±åæãã©ãããã©ã¼ã ã¨ãªããã¨Cloudera ã°ã¼ã°ã«ãBigQueryã®éå§ãçºè¡¨ããIBMã大è¦æ¨¡å¦çã®ã¨ã³ã¸ã³ã¨ãã¦Hadoopãæ¡ç¨ãAmazonã¯ã©ã¦ãã§ãHadoopå¦çãè¡ããAmazon Elastic MapReduceããµã¼ãã¹ãæä¾ãã¦ãããã¨ããåããããã«ãHadoopã¯ã¯ã©ã¦ãã§ã®å¤§è¦æ¨¡
ãã®è¨äºã¯ãArin Sarkissianæ°ã®ããã°è¨äºãhttp://arin.me/blog/wtf-is-a-supercolumn-cassandra-data-modelããæ°ã®è¨±å¯ãå¾ã¦ç¿»è¨³ãããã®ã§ããï¼åæå ¬éæ¥ï¼2009å¹´9æ1æ¥ï¼ ããï¼ãï¼ã¶æã¨ãããã®ãDiggã®ã¨ã³ã¸ãã¢ãªã³ã°ãã¼ã ã¯Cassandraã«ã¤ãã¦èª¿ã¹ãéã³ãæçµçã«ã¯ãããã¯ã·ã§ã³ã«ãããã¤ããããã«ããªãã®æéãè²»ããã¦ãã¾ãããããã¯å®ã«æ¥½ããããã¸ã§ã¯ãã§ãããã楽ãããªãåã«Cassandraã®ãã¼ã¿ã¢ãã«ã«ã¤ãã¦ç解ããããã«ç¸å½ã®æéãè²»ãããã®ã§ããã'super column'ã£ã¦ä½ã ããã¨ãããã¬ã¼ãºãä½åº¦ãå£ã«ããã¾ããã ããããªãã®ããã¯ã°ã©ã¦ã³ããRDBMSãªãã°ï¼ã»ã¨ãã©ã¿ããªãããã§ããããï¼ãCassandraã®ãã¼ã¿ã¢ãã«ã«ã¤ãã¦å¦ã¶éã«ãããã¤ãã®ãã¼ãã³ã°è¦ç´ã§
ãã£ã¡ã¯æ¬ç©ã®MapReduceã ï¼ ã°ã¼ã°ã«ãAppEngine-MapReduceããªã¼ãã³ã½ã¼ã¹ã§éçºä¸ ã°ã¼ã°ã«ã¯Google App Engineä¸ã§MapReduceå¦çãå®ç¾ãããªã¼ãã³ã½ã¼ã¹ãéçºä¸ã ã¨ãå æ¥è¡ãããã¤ãã³ãGoogle I/Oã§æããã«ãã¦ãã¾ããããã¸ã§ã¯ãã®ãã¼ã ãã¼ã¸ãGoogle Codeä¸ã«ãappengine-mapreduce - Project Hosting on Google Codeãã¨ãã¦å ¬éããã¦ãã¾ãã Reduceå¦çãJavaçã¯ãããã 1ã¤åã®è¨äºãã°ã¼ã°ã«ã«ããMapReduceãµã¼ãã¹ãBigQueryããç»å ´ãSQLã©ã¤ã¯ãªå½ä»¤ã§å¤§è¦æ¨¡ãã¼ã¿æä½ãã§ã¯ãã°ã¼ã°ã«ãSQLã©ã¤ã¯ãªå½ä»¤ãç¨ãã¦å¤§è¦æ¨¡ãã¼ã¿å¦çã®ãµã¼ãã¹ãæä¾ãããã¨ããä¼ããã¾ããã è¨äºã§ãæ¸ããã¨ãããããã¯å é¨ã§MapReduceã使ã£ã¦ãããã©
Spring Bootã«ããAPIããã¯ã¨ã³ãæ§ç¯å®è·µã¬ã¤ã 第2ç ä½å人ãã®éçºè ããInfoQã®ããããã¯ãPractical Guide to Building an API Back End with Spring BootããããSpring Bootã使ã£ãREST APIæ§ç¯ã®åºç¤ãå¦ãã ããã®æ¬ã§ã¯ãåºçæã«æ°ãããªãªã¼ã¹ããããã¼ã¸ã§ã³ã§ãã Spring Boot 2 ã使ç¨ãã¦ãããããããSpring Boot3ãæè¿ãªãªã¼ã¹ãããéè¦ãªå¤...
The document contains charts and graphs showing performance test results for different key-value store systems. A line graph shows the number of requests per second for Viver, Runes and V-Field systems with varying request sizes. Another set of line graphs show the latency percentage for different request sizes on two systems. The document also includes URLs and diagrams showing the architecture o
ã¾ãã 1 ã®å ¥åãã¡ã¤ã«ãåå²ããæ¹æ³ã¯ãInputFormatã¯ã©ã¹ã®ãgetSplitsé¢æ°ãä¸æ¸ããããã¨ã§ãã«ã¹ã¿ãã¤ãºã§ãã¾ãã ã¾ãã 3 ã®InputSplitãããKeyã¨Valueãæ½åºããå¦çããInputFormatã¯ã©ã¹ãéãã¦ã«ã¹ã¿ãã¤ãºã§ãã¾ãã InputFormatã®getRecordReaderé¢æ°ãéãã¦ãRecordReaderã¯ã©ã¹ãçæããã®ã§ãããããã«ä»»æã®RecordReaderã¯ã©ã¹ãæå®ããã°OKã§ãã 2 ã®Mapå¦çã§ãããã¦ã¼ã¶ãæå®ããMapperã¯ã©ã¹ã®å¦çãå®è¡ãã¾ãã Mapperã¯ã©ã¹ã¯ãMapRunnerã¯ã©ã¹ãéãã¦ãåæåå¦çãmapé¢æ°ãç¹°ãè¿ãéç¨ãçµäºå¦çã¨ãã£ãä¸é£ã®æµããå®è¡ãã¾ãã MapRunnerã¯ã©ã¹ãã«ã¹ã¿ãã¤ãºããã°ãããããæµããå¶å¾¡ãããã¨ãã§ãã¾ãã 0.20.0ããã®æ°ããMapRed
åæ£Key-Valueã¹ã㢠kumofs ããæ¬æ¥ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã¨ãã¦ãªãªã¼ã¹ãã¾ããï¼ kumofs@SourceForge kumofsé¢é£è³æã¾ã¨ã kumofsã¨ã¯ï¼ kumofsï¼ã¯ã¢ã¨ãã¨ã¹ï¼ã¯ãå®ç¨æ§ãéè¦ããåæ£ãã¼ã¿ã¹ãã¢ã§ããã¬ããªã±ã¼ã·ã§ã³æ©è½ãåããä¸é¨ã®ãµã¼ãã¼ã«é害ãçºçãã¦ãåä½ãç¶ãã¾ããåä½ã§ãé«ãæ§è½ãæã¡ãªããããµã¼ãã¼ã追å ãããã¨ã§èªã¿ã»æ¸ã両æ¹ã®æ§è½ãåä¸ããç¹å¾´ãæã¡ãä½ã³ã¹ãã§æ¥µãã¦é«éãªã¹ãã¬ã¼ã¸ã·ã¹ãã ãæ§ç¯ã»éç¨ã§ãã¾ãã kumofsã®å¤§ããªç¹å¾´ã¯ãã·ã¹ãã ã®æ§æã®ç°¡åã«å¤æ´ã§ããç¹ã§ããã·ã¹ãã ãæ¢ãããã¨ãªããç°¡åãªæé ã§ãµã¼ãã¼ã追å ããã復æ§ãããã§ãã¾ããã¢ããªã±ã¼ã·ã§ã³ã«ã¯ä¸åå½±é¿ãä¸ãã¾ããã ã¾ãkumofsã¯ãåºãå©ç¨ããã¦ããåæ£ãã£ãã·ã¥ã·ã¹ãã ã®ãmemcachedãã¨äºææ§ã®ãããããã³ã«ãå®è£
2010/01/15 ç±³ã¢ãã¾ã³åä¸ã®Amazon Web Servicesã¯1æ14æ¥ãã¯ã©ã¦ãã³ã³ãã¥ã¼ãã£ã³ã°ä¸ã§ã·ã¹ãã æ§ç¯ãè¡ãå ´åã®ãã¹ãã»ãã©ã¯ãã£ã¹ãã¾ã¨ãããArchitecting for the Cloud: Best Practicesããå ¬è¡¨ããã ããã¾ã§ã«ãå社ã¯ãAWSã®ãµã¼ãã¹ãçµã¿åããã¦ã¹ã±ã¼ã©ããªãã£ãå¯ç¨æ§ãå®ç¾ããäºä¾ãç´¹ä»ããããå ·ä½çãªãµã¼ãã¹ã®çµã¿åããæ¹ãªã©ã解説ããææ¸ãå ¬éãã¦ãããä»åæ°ãã«å ¬éããããã¯ã¤ãã»ãã¼ãã¼ã¯ããããã解説ã®é大æã¨è¨ãããã®ã§ãèªç¤¾ã ãã§ãªããã¤ã¯ãã½ãããIBMãã°ã¼ã°ã«ãå ¬éãã¦ãããã¯ã¤ãã»ãã¼ãã¼ãåç §ãã¦ããã 20ãã¼ã¸ã®è±æPDFã¯ã¯ã©ã¦ãä¸è¬ã®ã¡ãªãããç¹å¾´ãã説ãèµ·ãããAWSã®åãµã¼ãã¹ã®ç°¡åãªè§£èª¬ãç¶ããå¾ã«ãã¯ã©ã¦ãã®å種ã®ç¹æ§ãæ大éã«å¼ãåºãã·ã¹ãã ã«ã¤ãã¦ãä¸è¬è«ã¨ãã¦ã®æ¦
The Art of Concurrencyå訳æ¸ç±ã¸ã®æ¨è¦æ 訳è ã¾ããã ã¾ããã 1ç« ãéãããã人ãæãæãã¦ï¼ 1.1ããã¾ãã¾ãªçå 1.1.1ãã¹ã¬ããã¢ã³ãã¼ 1.1.2ã並åã¨ä¸¦è¡ï¼ãã®éãã¯ï¼ 1.1.3ããããªãã¨ãç¥ãå¿ è¦ãããã®ï¼ ã©ããªå½¹ã«ç«ã¤ã®ï¼ 1.1.4ã並è¡ããã°ã©ãã³ã°ã£ã¦é£ãããªãã®ï¼ 1.1.5ãã¹ã¬ããã£ã¦å±éºãããªãã®ï¼ 1.2ãã¹ã¬ããåã®4ã¤ã®ã¹ããã 1.2.1ãã¹ããã1. åæï¼ä¸¦è¡æ§ãæã¤é¨åãè¦ã¤ãåºã 1.2.2ãã¹ããã2. è¨è¨ã¨å®è£ ï¼ã¢ã«ã´ãªãºã ãã¹ã¬ããåãã 1.2.3ãã¹ããã3. æ£å½æ§ã®æ¤è¨¼ï¼ã¹ã¬ããåã®èª¤ãã®æ¤åºã¨ä¿®æ£ 1.2.4ãã¹ããã4. æ§è½ãã¥ã¼ãã³ã°ï¼æ§è½ããã«ããã¯ã®æé¤ 1.2.5ãã¹ã¯ã©ããéçº 1.3ã並åã¢ã«ã´ãªãºã ã®èæ¯ 1.3.1ãçè«ã¢ãã« 1.3.2ãåæ£ã¡ã¢ãªããã°ã©ãã³ã° 1.
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}