Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode

In our previous discussion, we saw that imposing bandlimited-ness on our class of signals permits point-wise sampling of our signal and then later perfect reconstruction. It turns out that by imposing sparsity we can also obtain perfect reconstruction irrespective of whether or not we have satsified the sampling rate limits imposed by Shannon's sampling theorem. This has extremely important in pra
ã©ã³ãã ããã¸ã§ã¯ã·ã§ã³ã¨ã¹ãã¼ã¹ãã¹ é´æ¨ å¤§æ æ±äº¬å¤§å¦æ å ±çå·¥å¦ç³»ç ç©¶ç§æ±äº¬å¤§å¦æ å ±çå·¥å¦ç³»ç ç©¶ç§ æ°çæ å ±å¦å°æ» 2010/7/16â7/26 1 ⢠Compressed Sensing (CS) - encoding â ã©ã³ãã ããã¸ã§ã¯ã·ã§ã³ â JohnsonâLindenstrauss Lemmaâ JohnsonâLindenstrauss Lemma ⢠Lasso & Dantzig Selector â decoding [Candes, Romberg, and Tao: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory, 52(2)
å§ç¸®ã»ã³ã·ã³ã°ã®å®è£ ãå ·ä½ä¾ã«ï¼æé©åã¨ã³ã¸ã³ã®pythonç¨ããã³ãã¨ã³ãã§ãã OpenOpt ã¨ï¼ãã®æ¡å¼µããã±ã¼ã¸ã§ãã FuncDesigner ã®ä½¿ãæ¹ãç´¹ä»ãã¾ãï¼ Tokyo.Scipy #3 http://partake.in/events/ac0fcc7d-a289-4e2a-bb8e-1965aab8b17b Sample Code : https://github.com/tokyo-scipy/archive/tree/master/003/shima__shimaRead less
æé©è¼¸éåé¡ï¼Wasserstein è·é¢ï¼ãè§£ãæ¹æ³ã«ã¤ãã¦ã®ãã¾ãã¾ãªã¢ããã¼ãã»ã¢ã«ã´ãªãºã ãç´¹ä»ãã¾ãã ç·å½¢è¨ç»ã使ã£ãå®å¼åã®åºç¤ããã¯ããã¦ã以ä¸ã®äºã¤ã®ã¢ã«ã´ãªãºã ãç´¹ä»ãã¾ãã 1. ãããã¯ã¼ã¯ã·ã³ãã¬ãã¯ã¹æ³ 2. ãã³ã¬ãªã¢ã³æ³ 3. Sinkhorn ã¢ã«ã´ãªãºã 4. ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ããæ¨å® 5. ã¹ã©ã¤ã¹æ³ ãã®ã¹ã©ã¤ãã¯ç¬¬ä¸å 0x-seminar https://sites.google.com/view/uda-0x-seminar/home/0x03 ã§ä½¿ç¨ãããã®ã§ããèªå·±å®çµããããå¿ãããã®ã§ã»ããã¼ã«åå ãã¦ããªã人ã«ãå½¹ç«ã¤ã¹ã©ã¤ãã«ãªã£ã¦ãã¾ãã ãæé©è¼¸éã®çè«ã¨ã¢ã«ã´ãªãºã ã好è©çºå£²ä¸ï¼ https://www.amazon.co.jp/dp/4065305144 Speakerdeck ã«ãã¢ãããã¼ããã¾ãã: https
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}