You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Open source Reinforcement Learning for Torch: Introducing torch-twrl Advances in machine learning have been driven by innovations and ideas from many fields. Inspired by the way that humans learn, Reinforcement Learning (RL) is concerned with algorithms which improve with trial-and-error feedback to optimize future performance. Board games and video games often have well-defined reward functions w
TensorFlowã§æ ªä¾¡äºæ³ã·ãªã¼ãº 0 - Google ã®ãµã³ãã«ã³ã¼ããåããã¦ã¿ã 1 - çµå¤ãå§å¤ãããé«ããªããã§å¤å®ãã¦ã¿ã 2 - æ¥çµå¹³å225éæã®æ ªä¾¡äºæ³æ£è§£çã©ã³ãã³ã°ã 3 - æ¥æ¬3506éæã®æ ªä¾¡äºæ³ã©ã³ãã³ã° 4 - å®éã«å£²è²·ãããå²ããã®ãã·ãã¥ã¬ã¼ã·ã§ã³ãã¦ã¿ã 5 - 大ããä¸ããã¨äºæ³ãããã¨ãã ãè²·ã£ã¦ã¿ãã·ãã¥ã¬ã¼ã·ã§ã³ 6 - å¦ç¿ãã¼ã¿ã®é ç®ãå¢ããï¼é ã層ã®ãµã¤ãºãå¢ããï¼ 7 - æ ªä¾¡ãä½%ä¸æããã¨äºæ¸¬ãããè²·ãã°ããã®ãï¼ 8 - ã©ã®éæãè²·ãã 9 - å¹´å©6.79% åç½®ã ç«ãæåããã£ã¼ãã©ã¼ãã³ã°ãã£ã¼ãã©ã¼ãã³ã°ããªã«ããç¾å³ãã®ï¼ ã£ã¦æãã ãã©ã 2015å¹´æ«ã« Google ãæ¸ãã ãMachine Learning with Financial Time Series Data on Google Clo
åºæ¬çã«ç«¶é¦¬ãªãã¦ããã¹ãã§ã¯ãªãã¨ç§ã¯æã£ã¦ãããè´å ã®åãåãå¤ãããã ãå®ããã«æ¯ã¹ãã°ã¾ã ã¾ãã ããããã§ãè³ãéã®20ï½30%ã¯è´å ã«åããããã¨ã«ãªãã*1 ãããä»åã¯ãã¡ãã£ã¨æãç«ã£ã¦ç«¶é¦¬ã®äºæ¸¬ããã£ã¦ã¿ããã¨ã«ããã çç±ã¯é¦¬å¸ã®å®ãã ãç§ã¯ç¾å¨ãè³ééãå°ãªã人éã§ãä¸å©ã«ãªããªãæè³å ãæ¢ãã¦ããã®ã ãã馬å¸ã®ä¸æ100åã¨ããå®ãã¯é åçã«æ ããæ ªã®å ´åã«ã¯ã©ããªå®ãæ ªã§ããæä½è³¼å ¥é¡ã¯æ°ä¸å以ä¸*2ãªã®ã§ãããç¨åº¦ã¾ã¨ã¾ã£ãè³éãå¿ è¦ã«ãªãã ã¾ãã競馬ã«ã¯æè¡ä»å ¥ã®ä½å°ï¼åªå次第ã§åå©ã§ããå¯è½æ§ï¼ãããã ä¾ãã°ãããªä¾ãããã ï¼ï¼ï¼ååããå²ãï¼è±æè³ä¼ç¤¾ãæ¥æ¬ã®ç«¶é¦¬ã§è稼ãããé©ãã®ææ³ - NAVER ã¾ã¨ã å½¼ãã¯çµ±è¨è§£æã«ãã£ã¦ç«¶é¦¬ã§åã£ã¦ããããã®æå¾ãé ãã¦ãããããããããããã¥ã¼ã¹ãåºãã¨ãããã¨ã¯ã解æè ã®è 次第ã§ã¯ç«¶é¦¬ã§åã¦ãå¯è½æ§ã
Machine Learning Advent Calendaråãã®è¨äºã§ãã æ®æ®µã¯Gunosyã¨ããä¼ç¤¾ã§ç¤¾é·æ¥ãããªãã社é·ããã¦ãã¾ãã ãã£ãããã㨠çµè«ã ãç¥ããã人ã¯ããã ã åºåã«ãããæ©æ¢°å¦ç¿ã®å¿ç¨ã®å¤ãã¯CTRäºæ¸¬ãéç¨ã®æé©åã®ãã(ã¯ã¨ãªã¼äºæ¸¬ã¨ã)ã®äºæ¸¬åé¡ ä»å¾ã¯ãCVRã®äºæ¸¬ãããã¢ã¯ãã£ããªã¦ã¼ã¶ã¼ã®äºæ¸¬ããããããªè©±é¡ã«ãªã(å ãã¦ãã®éç¨ãã©ãæé©åãããã¨ãã£ã話é¡ã) ç¾å¨ã¯æ¤ç´¢ã¨ã³ã¸ã³ã®å¿ç¨ä¾ãå¤ããä»å¾ã¯ãã£ã¹ãã¬ã¤åºåãã¿ã¤ã ã©ã¤ã³åºåã¸ã®å¿ç¨ãå¢ãã¦ãã å人ã®ã¦ã¼ã¶ã¼å±æ§ãéãããã¨ãä»ã¾ã§ä»¥ä¸ã«ã¡ãã£ã¢ã®ãã¸ãã¹çã«éè¦ã«ãªã åºåãæ¨è¦ã¨ã³ã¸ã³ã«éãããã¡ã¤ã³ç¥èã¯é常ã«éè¦ããã¡ã¤ã³ç¥èã¨æ©æ¢°å¦ç¿ã®ç¥èãæã£ãã¨ã³ã¸ãã¢ãææ決å®ã«æºããä¼ç¤¾ã¯ä»å¾å¤§ããã®ã³ã(ã¨æã) åºåã«ã¤ã㦠æè¿ã¯ãã£ã±ãåºåã®éçºããã¦ãããåºååéã§
Goel, G., Mirrokni, V. and Leme, R. P., Polyhedral Clinching Auctions and the Adwords Polytope, 44th ACM Symposium on Theory of Computing (STOC 2012). Google ã®2012å¹´excellent paperãæãããã¦ãã¦ï¼ãã®ä¸ã«ãªã¼ã¯ã·ã§ã³çè«ã®è«æããã£ãï¼Machine Learningã¨ç°ãªãï¼ãªã¼ã¯ã·ã§ã³çè«ï¼ã¡ã«ããºã ãã¶ã¤ã³ã¯èªåã®å°éåéã®ä¸ã¤ãªã®ã§ï¼ããã¤ã¾ãã§ç´¹ä»ãã¦ã¿ãï¼ãã¾ãå³å¯ãªæ°å¦çè¨è¿°ã¯è¡ããï¼ããããããéè¦ã§èª¬æãã¦ã¿ããï¼ ã¾ãï¼ãªã¼ã¯ã·ã§ã³ã«é¢ããå¤ãã®èª¤è§£ã解ãã¦ããããï¼ãªã¼ã¯ã·ã§ã³ã¨ããã¨ããåç©ï¼è²¡ï¼ãé«ã売ãã¤ããæ¹æ³ï¼ã¾ãã¯ï¼ã¤ããªã¯ã®ããã«ï¼ãããªããã®ãå¦åããæ¹æ³ã¨å®ç¨ä¸ï¼æãããã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}